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Soliton Contribution to the Electron Paramagnetic Resonance Linewidth in the
Two-Dimensional Antiferromagnetic
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An observed exponential decay in the electron paramagnetic resonance linewidth of the nearly
classical two-dimensional antiferromagnet as a function of temperature is shown to be the result of
solitons interacting with magnons, and provides an experimental confirmation of these excitations. The
temperature dependence of the linewidth is calculated using the dynamic spin correlation function
derived from soliton-magnon scattering in the Born approximation. Data in the critical regime for
(n-propylammonium) 2 tetrachloromanganese (II) are presented and compared to the theory.

PACS numbers: 76.30.Fc, 75.10.Hk, 75.40.Cx, 75.40.Gb

A large class of layered magnetic insulators has been
shown to exhibit the experimental characteristic of two-
dimensional (2D) magnetism and has been useful in
testing theories pertinent to 2D systems. Many of the
magnetic systems show 2D critical fluctuations with cor-
responding critical exponents [1] in the temperature range
immediately above the 3D ordering temperature. In
this paper we will focus on these fluctuations as ob-
served through electron paramagnetic resonance (EPR)
line broadening, which occurs in a narrow temperature
range just above the Neel temperature TN, in the nearly
2D antiferromagnetic case. About ten years ago Wald-
ner [2] experimentally showed that nearly classical (s =
z) layered antiferromagnets exhibited an Arrhenius EPR
linewidth AH —exp(E/T) temperature dependence im-
mediately above T~. It was also proposed that F was a
soliton excitation energy and further that the observed Ar-
rhenius behavior indicated that solitons contribute to the
EPR linewidth. Later Waldner [3,4] proposed that this
2D soliton was a static type, which was first investigated
by Skyrme [5] about thirty years ago. Finally Belavin
and Polyakov [6] applied Skyrme's solution to the 2D
classical Heisenberg magnet in the continuum approxi-
mation and showed that topologically the solitons cor-
respond to a mapping of the spin space sphere onto the
lattice plane. The soliton energy F,. = 4~Js is obtained
by the minimization of the classical Heisenberg Hamil-
tonian H = 1g&;,&S; S, , where J is the exchange con-
stant, and 5; is the spin vector at site i of magnitude
s. In Refs. [2,4] it was shown that the measured E in
the EPR linewidth temperature dependence agreed with
F, to within a few percent for four different compounds
with known values of 1, and it was implied that solitons
contribute to the EPR linewidth in the critical fluctuation
region. However, there are two difficulties with this in-
terpretation. First, since the EPR linewidth is related to
the time-dependent spin correlation function, static soli-
tons cannot contribute to the linewidth. Second, the the-
oretical basis for the Arrhenius behavior derives from a
calculation by Mikeska [7] for the 1D magnet, rather than

the 2D, with the time dependence resulting from moving
sine-Gordon solitons. Indeed, Waldner [4] has remarked
that, since the soliton contribution to the EPR linewidth
for the 2D magnet was not known, the agreement between
the observed Arrhenius behavior and the excitation energy
F, is perhaps fortuitous.

To interpret the observed Arrhenius behavior it is nec-
essary to calculate the dynamic soliton contribution to the
EPR linewidth or equivalently the time-dependent corre-
lation function in the critical fluctuation region. Previous
work on the dynamics of 2D magnetic solitons is scant.
Mobile vortices rather than solitons were considered by
Gouvea et al. [8] with the result that motion gives rise to a
central peak in the frequency-dependent correlation func-
tion. Later we showed [9] that soliton motion also results
in a central peak. The soliton-magnon interaction is an-
other mechanism that will affect the dynamics, but was
considered only for the 1D sine-Gordon system by All-
roth and Mikeska [10]. In the 2D magnet only the vortex-
magnon interaction has been investigated [11]. Recently,
the EPR linewidth has been calculated for the 2D quan-
tum (s = 2) antiferromagnet (AFM) by Chakravarty and

1

Orbach [12] with the result that the dominant temperature
dependence is exp(3E, /2T) rather than exp(E, . /T), and this
has been experimentally confirmed by Castner and Seehra
[13]. Chakravarty and Orbach's results, however, can-
not be applied with great accuracy to the nearly classical
(s = 2) spin systems in which solitons are expected.

In this Letter the dynamic spin correlation function
owing to the soliton-magnon interaction is calculated us-
ing the technique of Refs. [8—11]. Next, the temperature-
dependent EPR linewidth is calculated and shown to have
the form exp(E, /T). Finally, the calculated tempera-
ture dependence is then compared with EPR linewidth

5
data on several previously measured s =

2 layered man-
ganese compounds as well as our new data on n-
propylammonium tetrachloromanganate, (n-PA) 2MnC1 4.

We begin with the Lagrangian for the two sublattice
antiferromagnet, which is described by the magnetization

]vector m =
2 (S~ + S2) and the sublattice magnetization
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vector l =
2 (St —S2), where the subscripts refer to the

different sublattices. In the critical fluctuation region with

negligible external magnetic field, the condition)l( » (m(
is satisfied and the Lagrangian can be expressed in terms
of l only [14],

J~(nr) and I'~(nr). In the presence of a soliton, f(r)
is obtained from the solution of Eq. (2) when magnons
scatter from the outer part (r » ro) of the soliton as
was done in Ref. [11] for the vortex-magnon interaction.
Equation (2) is solved in the Born approximation with the
assumption that q is small, resulting in the large radii so-
lution

2 2

f(r) = (3)
To calculate the spin correlation function we use the
soliton structure factor

—sin 0(Vq ) d x, (1)

where 9(x, y) and p(x, y) are polar and azimuthal angles
of the vector l, which has length s, and c is the
magnon velocity. Static soliton solutions are obtained by
integration of the nonlinear equations of motion for the
two dependent variables

(p, sin0), /c = V 0 —(V'p) sing coso

l (r, t)e '~ "d r,g(q. t) = (4)

where l'(r, t) is the x component of the sublattice mag-
netization with the time dependence resulting from the
soliton-magnon interaction. This structure factor contains
a static contribution from the static solution and a time-
dependent contribution from soliton-magnon scattering.
Both of these parts are evaluated in the large-r approxi-
mation (cosOO —= l, sinHO = 2ro/r) by substituting Eq. (3)
into the dependent variable transformations which are
then used in Eq. (4) to get

g(q, t) = [go(q) + g&(q)cosset]cosy, (5)
where go = 4vriro/q, g&

= —4niroq/tr, and y is the
~ 3

direction of q relative to the x axis.
Finally, the structure factor can be used in Eq. (4) to

get l'(r, t) from which the spin correlation function and
the EPR linewidth will be calculated. The linewidth is
the temporal integral of the four-spin correlation function
and is given by

AH =
2 QA(ko)Re e' "'(l'(t)l ~(t)l' l')dt.

2yg 6
(6)

Here A(ko) is related to the Fourier coefficients of the
dipolar interaction evaluated at the anti ferromagnetic
wave vector (ko = vr/a), and coo is the resonance fre-
quency. At this stage it is possible to evaluate the
soliton contribution to the four-spin correlation function
without use of the usual decoupling procedure in which
the four-spin correlation function is expressed as a product
of two-spin correlation functions. Assuming that l'(r, t)
is from solitons at different centers r„, then l'(r, t) =
g„ l (r —r~, t), and the sums over the soliton centers
yield [15] n(g(q, t)g( q, t)g(q,—0)g(q, 0)) for the correla-
tion function, where n —I/R2 is the soliton density in
terms of the correlation length [12]. Referring to Eq. (5),
it should be noted that the four-spin correlation function
in Eq. (6) will contain time-independent terms which will
integrate to zero because of the oscillatory e'"o' factor.
Since the dominate contribution [12] to the sum over q in

Eq. (6) will be in the small q region, we only retain terms
linear in g~. This results in the leading soliton contribu-
tion to the linewidth

s'
AH, —n (go) (gogi) cosa'(q)t' "' dt .

gi (27r) o

1+ o.' + —1 —2 cosoo = 0,r2 (2)

where n = ~ (q)/c and cu (q) = c)q ~
is the magnon fre-

quency. The absence of a soliton corresponds to costa =
1, resulting in Bessel function magnon solutions f(r) =

0„/c = V' (sin OV'q),

where the subscript t indicates a partial time derivative.
A particular solution 00(r) = 2tan '(ro/r) and p = P
is easily obtained by integration of these equations in a
polar (r, @)coordinate system. As mentioned previously,
either soliton motion or soliton-magnon scattering must
be considered to obtain the dynamic spin correlation
function. Soliton motion results in a central peak at zero
frequency, which is far removed from the EPR resonance
frequency, therefore, the soliton-magnon interaction will
be the time-dependent mechanism considered here.

In order to determine how the soliton-magnon interac-
tion affects the time-dependent spin correlation function,
it is first necessary to calculate the time dependence of
the dependent variables 0 and p which appear in Eq. (1).
We do this by assuming that the spin polar and azimuthal
angles can be expressed as 0(r, t) = Oo(r) + g(r, t) and
p(r, P, t) = @ + g(r, t). Here g and $ are assumed to
be small quantities which reduce to magnon solutions if
no solitons are present. In the presence of a soliton, g
and g give the change in the soliton structure as a re-
sult of the soliton-magnon interaction. As a further sim-
plification we use the results of Ref. [11] where it was
shown that s-wave scattering gives the main contribution
to the vortex-magnon interaction. Therefore we assume
that ~ and g are independent of P. Then to first order
in small quantities the equations for 0 and p become first
order equations to be solved for g and g. Next, the ansatz
N(r, t) = rf (r) sin&0(r) cosset and g(r, t) = rf (r) sincut-
is useful in that it results in the equations for ~ and $
decoupling into a single equation to be solved for f(r)
These substitutions give

1f„„+—(3 —2 cos00)f„
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First, the time integration in Eq. (7) is performed by
assuming that the magnetization relaxes by diffusion,
which is expected for manganese compounds [16]. The
complex magnon frequency is cu(q) = cq + iDq /2,
where D is the diffusion coefficient. Next, the sums
over q are converted to integrals and evaluated by
use of the following two approximations. First, the
temperature-dependent soliton sizes (ro) are assumed to
be independent of the wave vector integral. Second, since
well-defined spin waves [17] exist if qR ) I, the lower
limit of the q integral is 1/R. These assumptions lead
directly to (go) —42~~(ro) lnR and (gog|) —32(T/c) (ro).
Finally, the temperature-dependent soliton sizes
are estimated by performing the thermal average
(ro) = (I/z) g ro e '~, where z is the partition function
for a single excitation. The sum can be converted to
an integral by including a "density of states" factor
as was done in Ref. [9], but the form of this factor is
not critical here. The upper limit of this integral is
determined by the requirement that Ho(R) ~

~
maxHo„~,

so that the "gap" at the soliton edge at r = R will be
consistent with the continuum approximation giving
the final temperature dependent factor (ro) —R/2 and

(ro) —R2/3. The remaining temperature-dependent
factors are the diffusion coefficient obtained through
dynamic scaling by Chakravarty, Halperin, and Nelson
[17], D = RQT/g&, and the correlation length from
Takahashi's [18] modified spin wave theory for the
2D AFM, R = (I/8~2e ~ )e~*~2T. These result in the
following soliton contribution to the EPR linewidth:

where c = ~8 Js and ~& = I/8J(II = 1). The magnon
contribution to the linewidth which was calculated in
Ref. [12] can be applied to the classical AFM using
Takahashi's [18] q = 0 spin correlation function which
gives

AHM—

Combining these we obtain the final expression for the
temperature-dependent EPR linewidth,

T 16s ~ T ~T
lnR+

~
R R,

cg~ 3~2 ( Js2 4 Js2 2T
(8)

which has the observed Arrhenius behavior if the second
term is small compared to the first.

For experimental confirmation we chose (n-PA) 2MnC14
because it is a good approximation to the classical 2D
AFM [19]. In particular, this is a layered compound with
the MnC1 layers separated by n-PA cations, resulting in
a very small interlayer exchange coupling of the order
of 10 5 J while the intralayer exchange is 9.2 K. Also
since Mn(II) has s = z, it is well approximated by a clas-
sical spin model so that nonlinear excitations should in-
deed follow from Eq. (1). Temperature-dependent EPR
data were obtained with a Varian E109 series X-band

spectrometer. At room temperature the compounds ex-
hibited similar angular and temperature-dependent EPR
linewidth characteristics of spin diffusion in a 2D system
[16]. Below room temperature the linewidth decreases
linearly with decreasing temperature until a minimum
linewidth is reached at approximately 70 K owing to ex-
change narrowing. At lower temperatures the increasing
correlation length results in an increasing EPR linewidth
beyond T~ (T~ = 39.2 K) to the lowest measured tem-
peratures in the ordered state. It was in this region that
the temperature-dependent linewidth for other manganese
compounds in Refs. [2,4] was attributed to static solitons.
Figure 1 shows the temperature-dependent linewidth from
54 K down to 46 K on a semilog plot versus T~/T so that
the dominant exponential dependence can be clearly seen.
The temperature-dependent EPR linewidth is calculated
from Eq. (8) and compared with these data for first the
classical soliton energy E, = 725 K, resulting in the cal-
culated linewidth from the soliton-only contribution rep-
resented by the dashed curve in Fig. 1. The solid curve
represents both the soliton and magnon contributions to
the linewidth from Eq. (8). Throughout the observed
temperature range it should be noted that the soliton
contribution is the main source of the linewidth tempera-
ture dependence. We have also included the Chakravarty-
Orbach theory from Ref. [12] which is indicated by CO in
Fig. 1. Finally, it should be noted that this theory is only
valid in the narrow temperature range where the hydrody-
namic description of the AFM is applicable and broaden-
ing begins. Experimentally this region begins at approxi-
mately Tz/T —0.7, where R = 10, but in the vicinity of
T~/T —0.86 the line broadens to the extent that we can
no longer accurately measure the linewidth.

The temperature-dependent linewidth given by Eq. (8)
appears to fit the experimental data of all of the nearly
classical layered compounds studied. This is seen because
of the near equality of the measured excitation energy,
obtained from the slope of the InAH versus Tz/T graph,
and the calculated soliton energy E, . This agreement

1000
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FIG. 1. hH versus T/T~ for (n-PA) 2MnC14. The dashed
curve is the calculated temperature-dependent linewidth due to
solitons only, and the solid curve is the calculated linewidth
with magnon effects included. The linewidth calculated from
the Chakravarty-Orbach (CO) theory is also indicated.
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Mn~+ compounds
(s = —,)

K~MnF4
Rb2MnF4
(CH 3NH, ) ~MnCI 4

(C 2H, NH, ) 2MnC14
(n-PA) zMnC14

Measured E
(K)

620
650
760
770
727

F, =4vrJs
(K)

653
591
784
700
710

between the measured and calculated excitation energies
is presented in Table I for the four compounds previously
measured by Waldner as well as our result for (n
PA) 2MnC1 4.

In summary, solitons interacting with magnons in the
classical 2D AFM result in an EPR linewidth with a
dominant exp(E, /T) temperature dependence. Since this
dependence can occur only if solitons are present in the
fluctuation region, EPR linewidth measurements provide
an indirect method to experimentally detect solitons.
Finally, experimental data confirm that solitons dominate
the thermodynamics in the fluctuation region immediately
above T~.
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TABLE I. Measured and calculated excitation energies for
various Mn + compounds.
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