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Fluid Dynamics of Colloidal Magnetic and Electric Liquid

Mario Liu*

Institut fiir Theoretische Physik, Universitidt Hannover, 30167 Hannover, Germany
(Received 26 July 1994)

Consistent inclusion of the Maxwell equations, especially the recently derived dissipative fields, leads
to two novel ponderomotive forces: one electric, the other magnetic. This completes the rigorous fluid
dynamical description of ponderable liquids and renders mesoscopic variables such as domain spin or

particle rotation superfluous.

PACS numbers: 75.50.Mm, 47.65.+a

The hydrodynamic theory of isotropic liquid consists
of three balance equations for the conserved densities:
energy, momentum, and particle number; the dynamics of
the electromagnetic field is governed by the macroscopic
Maxwell equations. Put together, there is no reason at
all why these equations should not describe the dynamics
of any fluid that is either exposed to an electromagnetic
field or, equivalently, contains charges. The fluid may
be insulating or conducting, polarizable, magnetizable,
or both, as all these phenomena abide conservation laws
and are contained in the macroscopic Maxwell equations.
What is more, including the concentration as a variable,
these statements become valid for a mixture, and at
the price of a smaller hydrodynamic regime, also for
suspensions: ferrofluid (including both the quasistationary
and the micropolar variety [1]) and colloidal electric
fluid [2].

This claim is bound to raise a few eyebrows, especially
in the ferrofluid community. The hydrodynamics of fer-
rofluid [1,3,4] relies squarely on two additional variables,
the magnetization M and the spin S of the suspended par-
ticles, to successfully interpret and understand the peculiar
behavior of ferrofluid. In fact, the torque (or couple) pro-
duced by M and S are considered by many in the field as
the most characteristic feature of ferrohydrodynamics.

Before going into the detailed arguments showing why
the variables M and S are nevertheless dispensable, it
is worth pointing out that if the opening statements are
true, we would have at our hands a highly useful and
desirable theory, which is simple, rigorous, and unifying.
The theory is simple since it contains the smallest possible
number of variables and, accordingly, the smallest number
of equations of motion. The theory is rigorous, since
it starts from generally valid input: conservation laws,
Maxwell equations, and thermodynamics. (In contrast, M
and S are not conserved.) Finally, the theory is unifying
as it is valid for all the systems outlined above.

The crucial new step in the present approach is the sys-
tematic and consistent inclusion of the Maxwell equations,
especially the dissipative fields H? and E? that were only
recently derived and considered [5]. These dissipative
fields appear when the magnetization and the polariza-
tion are not quite in equilibrium, and drive them toward
it (i.e., they assume the same function as the diffusive
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heat current or the viscous stress). They also enter the
Navier-Stokes equation and transmit momentum and an-
gular momentum from the electromagnetic field to the
material; in other words, they serve as dissipative pon-
deromotive forces there. For instance, the peculiar behav-
ior of ferrofluid exposed to a rotating field [6] is easily
understandable with the help of the magnetic part of this
force. In what follows, the dissipative fields and forces
will be introduced first. Then, concentrating on ferroflu-
ids, the ramification of the dissipative magnetic force will
be considered, ending with a note on how to draw the
analogy to the electric case. Finally, the complete set of
hydrodynamic equations of ponderable systems is derived.
The structure of the macroscopic Maxwell equations,

D = ¢V x HM — je, B=—-cVXEM (1)
V-D = p°, V-B=0, 2)

imposes the interpretation that the field variables are D
and B. The first two are their equations of motion;
the next two are constraints, to be satisfied at all times.
Conversely, the two fields HM and EM appear only in
the flux part of the equations of motion. They are the
“currents,” which generally contain both reactive and
dissipative parts,

HM =H + H’, EM=E +E". 3)

In accordance with the concept of local equilibrium,
the reactive fields H and E contain only equilibrium
information and are given as H = d¢/0B, E = 9¢/9D,
respectively, £ being the thermodynamic energy density
[7]. Generally, H and E are nonlinear functions of all the
thermodynamic variables, in particular of D and B. The
nonequilibrium information is confined to the dissipative
fields HP and EP, which are functions of thermodynamic
forces, e.g., the temperature gradient VT or the shear
flow v;; = (V;v; + V;v;)/2. For the simple isotropic,
diagonal case, we have [5]

HP = —acV X E°, EP = BcV X HY. (@)

As the rate of entropy production must not change with
the frame, the dissipative fields depend only on the
thermodynamic fields in the local rest frame: E® = E +
v X B/c and H> = H — v X D/c. The terms HP and
EP are of different parity under time reversal than H and
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E, respectively; they therefore account for irreversibility
and damping in Egs. (1) [8]. A direct and noteworthy
consequence of Eq. (3)—cf. Eq. (17) below—are the
dissipative ponderomotive forces,

.. = B X (VX HP), f0 =D X (VX EP). (5
The size of these dissipative fields and forces depends
on the magnitude of the transport coefficients « and S.
These have been estimated, in a simple model [5], as
a = 7ydM /9B and B = TpdP/dD, where T denotes the
relaxation time, of the magnetization if the index is M and
of the polarization if it is P. Obviously, « is especially
large in ferrofluids, and B in colloidal electric fluids. So
these fluids are not only interesting in their own right; they
also display prominently the rather general feature of the
Maxwell equations to entertain dissipative magnetic and
electric fields. Vice versa, the Maxwell equations play a
much more direct role in their fluid dynamics than has
been hitherto taken account of.

Neglecting B (of the dissipative electric field) in a
ferrofluid, the dissipative magnetic field, Eq. (4), can be
written as

H® = a[B— (B-V)v + B(V-v) + (v-V)B]. (6)
(The last two terms depend on compressional flow and
field inhomogeneity, respectively; they are usually small
and will be neglected here.) Consider first solid body ro-
tation v = £ X r in the presence of a static field B. With
(B - V)v = Q X B, the Navier-Stokes equation reduces
to 0Q = [r < 2 = [a[(2 - B)B — B?Q], with 6
denoting the moment of inertia. Although the relaxation
rate 6! [ @B? is for a mm-size sphere (o = 1075 s) 2
orders of magnitude smaller than the eddy-current rate
foB?/pc? of a good conductor (with a conductance
o =~ 10" s7! an industrial-size effect), it is certainly mea-
surable in ferrofluids. Next, consider shear flow in the
presence of a static field. With fﬁagy,« = aB;BiVi(Vv; —
Viv;), the shear diffusion equation becomes pv = 7.V?v,
where 17, = n + aB?cos?p, and ¢ denotes the angle be-
tween B and the direction of the gradient. Obviously, the
viscosity increases (as observed) when exposed to a field.
(Note, however, that the viscosity is a tensor in the pres-
ence of fields, hence the field dependence may in general
be more complicated.)

Things are just as simple if the external field is time
dependent, yet the story of understanding the spin-up
of ferrofluid due to a rotating field has been long and
winding indeed. First, theorists did not accept that there
was a spin-up at all; then, for a long stretch of time, theory
and experiment could not agree on the sense of fluid
rotation, as ferrofluid was frequently observed to rotate
against the external field (and admittedly also against the
intuition). Only recently did Rosensweig, Poppelwell, and
Johnston, in a series of thought- and artfully designed
experiments, compellingly show that the key to the
understanding lies in the combination of a surface couple
and the fluid’s capillary form [6]. Not surprisingly, the
part of the dissipative ponderomotive force containing
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B of Eq. (6), fgag = B X (V X aB), is such a surface
coupling: It vanishes inside the ferrofluid, since the B
field is essentially homogeneous, but not at the fluid
surface, where « is discontinuous. More appropriately,
one should, as in Eq. (19) below, incorporate fgag into
the boundary condition:

v;/R) = aB,(B, — B;V;v,), (7

where the subscripts n and ¢ refer to the field’s normal
and tangential components, respectively, and R is the lo-
cal curvature radius. This boundary condition expresses
continuity of the total stress tensor (or momentum conser-
vation ) at a free surface even though the magnetization
is (due to B) not quite in equilibrium. At a stick surface,
the usual boundary condition v, = 0 holds. They have
to be satisfied by the solution of the shear flow equation
pv = 1.V?v. This is all we need for a quantitative un-
derstanding of the ferrofluid’s spin-up.

In a planar geometry, with a free surface at x = —L,
a stick surface at x = 0, a static B,||%, and an oscillatory
B, = AB,exp(—iwt) || $, the flow field for large pene-
tration depths (8, = /n./pw > L, n, = n + aB?) is
vy(x) = (—iwax/n.)B,B,. For higher frequencies, sub-
stitute x with singx/(q cosqL) [where ¢ = \/i/8,, and
2i singx = exp(igx) — exp(—igx) even though g is com-
plex, and similarly for cosqL]. The flow field is un-
changed for two free surfaces, at x = *L, except for an
undetermined constant velocity.

Now take a counterclockwise rotating field, B, =
Bcoswt,B, = Bsinwt. The boundary condition becomes
awB*(1 + cos2wt)/2 = (g + aB?cos’wt)V,v,, which
implies nonlinear drive. We therefore assume 7 > aB?
and expand in @B?/7. Then the flow field remains linear
and is given by the superposition,

awB? e 2%’ singx
vy(x) = x +
27 g cosqL

with ¢ = (1 + i)/8,, 6, =+/n/pw. For 6, < L, the
second term is small and simplifies as singx/(q cosqL) =
explig(x + L)]/ig, which is nonvanishing only between
—L and &, — L. The velocity at the free surface is then
v, (=L) = —(@wB?/2n)[L + 8,(i — 1) 'exp(—i2wt)].

Clearly, magnetic excitation of a planar shear flow
merits attention for its own sake, but it also provides
understanding of the ferrofluid’s spin-up. Consider a
sheet of circular flow between two concentric cylin-
ders, of distance D and with the free surface at the
inner cylinder. The rotating field now has a differ-
ent phase at each point of the fluid, given by the
polar angle ¢ of the location, B, = Bcos(wt — ¢),
B, = Bsin(wt — ¢). So the above planar flow field
needs to be averaged over ¢ (leaving only the time-
independent part) and bent into a circle. The result
is a clockwise rotating free surface, with the veloc-
ity v = —(eqwB?/27.)D. [By averaging cos’(wt — ¢)
over ¢, the effective viscosity n, = n + aB?/2 is time
independent. Hence the drive is linear even without an
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expansion in @B?/n]. Now, it is plausible that if the free
surface of a ferrofluid curves up at the vessel wall, as wet-
ting fluids do, the capillary region can be modeled as such
a sheet of circular flow while the bulk of the liquid below
the capillary region rotates, more or less, with the veloc-
ity of the free surface [6]. With a =~ 107°, B2 =~ 103 [7],
the velocity of the free surface and hence of the bulk is
estimated to be a few cm, as measured. [The observed
instability in Fig. 3 of [6] may be due to the oscillatory
part ~ cos2(wt — ¢).]

More generally, the shear diffusion equation may be
solved in cylindrical coordinates, assuming symmetry
with respect to ¢. This yields the velocity field v =
Qr + 8/r along the ¢ direction, with two constants, ()
and &, to be determined by boundary conditions, at the
stick surface R; and the free surface Ry. The result is
v(r) = Q(r — R?/r), with

Q = aB’w/[4nR}/R} + aB*(1 + RZ/R))]. (9
Clearly, v(R;) >0 if Ry > R,, or corotation of the
bulk fluid, while v(R;) <O if Ry < R, counterrota-
tion. If the two radii are close, the flow field be-
comes the bent planar solution of the last paragraph,
with D = R; — Ry. (Experimentally, the present situ-
ation may be realized by a freely rotating cylinder at Ry.)
If one of the two radii Ry and R; vanishes, then 6 = 0 to
prevent divergence at » = 0. We have ) = 0 if the re-
maining one is R;, and a corotating £} # 0 if Ry remains.
(The value of () depends on the residual damping.)

By substituting D — B, E — H, B — «, analogous
results are produced for colloidal electric fluids.

The standard theory of ferrofluid dynamics [1,3,6] con-
tains the mesoscopic quantities magnetization M and spin
S as additional variables. The usual argument to in-
clude them is as follows: Given a time-dependent ex-
ternal field, the magnetization will generally lag behind
the perturbation and hereby produce a macroscopically
detectable coupling. However, this is not at all special.
Many internal degrees of freedom lag (more or less) be-
hind time-dependent perturbations, and the resultant net
effects do not usually average to zero. Nevertheless, these
internal degrees of freedom are not considered indepen-
dent; rather, they are taken to assume the appropriate equi-
librium values. This is, of course, the concept of local
equilibrium, the central premise of the hydrodynamic the-
ory. The delay, on the other hand, is adequately taken
care of by the transport coefficients and the dissipative
terms they precede. A well-known example is the second
viscosity that arises from a slowly relaxing scalar quan-
tity [9]. In the present situation, this means that M and
H have to be given the local equilibrium value ||B, while
the fact that M and H are not quite in equilibrium is ac-
counted for by the dissipative field HP.

Part of the success of standard ferrohydrodynamics
is certainly due to the fact it lies halfway between
macroscopic and mesoscopic scales; the other half is
attributable to the judicious handling of the theory. M’s

evolution with time needs to be solved by considering
simultaneously its equation of motion and the Maxwell
equations, since both are strongly coupled. But this is not
always easy. So intuitive shortcuts are taken to substitute
for calculations; e.g., the rotation rate w, of the particles
is either simply set to that of the field wy, or w, = kwy
is taken with &k = 0.75 [6]. (In fact, the latter is hardly
a viable choice: there is no inherent reason for all the
crystallites to rotate in phase while out of sync with
the external field.) Less of practical relevance may be
the fact that the standard theory of ferrohydrodynamics
does not usually contain the particle concentration as an
independent variable, although it is conserved and as such
a bona fide long lived degree of freedom.

Now to comments on Henjes’s recent work [10], who
starts from similar preconceptions, and provides a percep-
tive account of the state of the art of ferrohydrodynam-
ics. Her results_, however, are different. The dissipative
field, H? = a[B; — (@ X B); — Bivi] from Eq. (6), al-
ters the Maxwell and Navier-Stokes equations, and leads
to an entropy production rate (H”)?/a; cf. Eq. (15) be-
low. In contrast, Henjes postulates an antisymmetric part
of the dissipative stress tensor, eiijjDk = a;;{);, which
leads to the entropy production rate «;;{2,;{};. This can be
made to agree with the above expression for a solid body
rotation in a static field, but not for shear flow nor for a
time-dependent field. Especially, the equilibrium state of
a solid body rotation with the field corotating, in which
no entropy is produced, is not correctly accounted for.
To retain the symmetry of the total stress tensor, Henjes
requires the reactive stress to also possess an antisymmet-
ric part, given by H X B. As criticized, this goes be-
yond local equilibrium. More fundamental, however, is
the objection that ) is an equilibrium quantity and not a
thermodynamic force; the entropy production must not be
expanded in it [9].

In the following, the complete hydrodynamic theory
is derived. We start with the statics. The total energy
density & is a function of B and D, and a function
of (the densities of) the following quantities: entropy s,
total momentum g'*** = pv + E X H/c, particle mass p;,
and liquid mass p,. Instead of the last three variables,
however, it is more convenient to take the [11] momentum
density g = g'* — D X B/c, the total density p = p; +
p2, and the density difference p. = p; — p, as the
independent variables:

de = udp + u.dp. + Tds

+ ‘U,‘dgi + H,‘dB,' + E,dD, (10)

In equilibrium, maximizing the total entropy with appro-
priate constraints, we obtain a constant chemical potential
w and the vanishing of all the thermodynamic forces: VT,
Ve, vij, VX HY, V X E® [59,12].

Given the thermodynamics, Eq. (10), having identified
the conserved quantities (especially g'*') and the ther-
modynamic forces, the hydrodynamic equations can now
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be derived employing the “standard hydrodynamic proce-
dure”: Calculate ¢ via Eq. (10) and require the result to
become V- Q (where Q is the energy flux). This is indeed
how the usual hydrodynamics [9,11] and the Maxwell
equations [5] are derived. A simultaneous derivation is
what has been carried out here. The resultant equations,
in addition to the Maxwell equations, Eqs. (1)—(3), are

p + Vilpv)) =0, 9.8 + Vi(IT;; — Hf}) =0, @An
5+ Visv; — fPY=R/T, pc + Vilpev; — jP) =0,
(12)

with the reactive part of the stress tensor II;;, the energy
flux Q, and the rate of entropy production R given as

IL; = [giv; — EiD; — HiB; + (i = j)]/2

+(Ts + wpp + pepe + vig;

+E:D; + H;B; — £)8,;, (13)
Qi =(Ts + up + pepe + gjvjv;
=TfP = weily — ;115
+c¢(E X H + EP x H* + E* x HP);, (14)
R =f2VT + j” - Vu, + DPv; + (§¢ — p°v) - E
+ EP - (¢V X H%) — HP- (¢V X E%). (15)

Note the symmetric form of the stress tensor II;; =
IT;;, which follows directly from the rotational identity,
E XD+ H X B + v X g=0. The explicit form of the
dissipative terms in Egs. (1), (11), and (12) are obtained
from the rate R of entropy production, Eq. (15), of which
the fluxes, fP,...,EP, —HP, are expanded in the forces,
VT,...,(cV X E%. Considering only diagonal terms, we
have especially E? and HP of Eq. (4). Slightly more
generally, we may focus on an insulating ferrofluid, and
consider only a static B field,

_H,D &jj /\ijl (CV X Eo)j
= = R 16
( 5 ) ()\ikj Nikjl vj (16)

where X,vkj = —\;ix(—B), and the number of independent
elements in «;;, Aiji, Nijr are 3, 4, and 7, respectively.
The A elements contribute to the effective viscosity and
the boundary condition, Eq. (7). Details will be published
elsewhere.

Using the Maxwell equations, Egs. (1) and (2), one can
calculate 9,(D X B), subtract the result from the Navier-
Stokes equation, Eq. (11), and arrive at

pdi(gi/p) + sViT + pViu + pViu. + g;Viv;

= V0I5 + (p°E + j* X B + 0., + 5., (17)
a physically transparent formulation of total momentum
conservation. The first term on the left, with the material
derivative d, = 9, + v;V;, contains both the acceleration

pv and the Abraham force [12], 3,(E X H — D X B)/c.
The latter is a small quantity if the electromagnetic wave-
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length of a given frequency is large compared to the ex-
perimental dimension, as is usual for hydrodynamic fre-
quencies. The next four terms are the proper general-
ization of the pressure gradient and include the reactive
pondermotive forces: For instance, take the special form
e =%(p,s, g, pc) + B>/2(1 + xy). No D field, hence
g = pv, and yu = 2p;f(s) > 0, with f arbitrary other-
wise. Then these four terms can be written as VP +
M,VH; + V(sH?>dx/ds)/2, where P = —& + pd&/op +
sdE/ds + gdg/dg + p.0€/dp. is usually referred to as
the “hydrostatic pressure.” The right side of Eq. (17)
contains the Lorentz force (in terms of E rather than
EM = E + EP) and the dissipative ponderomotive force,
Eq. (5).

Finally, the boundary conditions: Barring surface
charges and currents, the Maxwell equations, Egs. (1) and
(2), stipulate the continuity of the following quantities:

AD,, AB,, A(H + HP),, A(E + EP), =0, (18)
which, in conjunction with the continuity of the total
stress tensor, A(IT;; — Hﬁ = 0, lead to

D,AEP + B,AHP — ATI2 =0, (19)
or Eq. (7) for the considered situation.
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