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Fermi- and Non-Fermi-Liquid Behavior in the Anisotropic Multichannel Kondo Model:
Bethe Ansatz Solution
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We solve the multichannel Kondo model with channel anisotropy using the Bethe ansatz method. The
model generates energy scales, characterizing the neighborhoods of the various infrared fixed points,
reflecting the structure of the symmetry breaking in the channel sector. The nature of these fixed points
also depends on the magnitude of the impurity spin S. We present a detailed discussion for the two
channel case and point out some possible non-Fermi-liquid behavior.

PACS numbers: 75.20.Hr

Non-Fermi-liquid (NFL) behavior observed in some Ce
and U alloys [1] has stimulated an intense study of many
impurity models, in particular, of the multichannel Kondo
model [2]:

f
H = Hp + 2g P Jr/am(0)oablgbm(0) ' S, (1)

a,b m= 1

where Hp = —i P, . f dx Pt (x) it, t/t, (x) H.ere the
field P, describes electrons with spin index a = ~l/2
and orbital channel (flavor) index m, m = 1, . . . , f, and
we chose to set vF = 1. The operator S represents the
spin-S impurity localized at x = 0.

The infrared behavior of the model depends on the
structure of the flavor sector [2]. In particular, a new
behavior appears when f ) 2S, with the overscreened
system exhibiting NFL physics.

An exact solution was found for the isotropic case,
J = J [3,4]. The solution yields the spectrum and the
thermodynamics for any temperature and magnetic field.
In particular, the residual entropy and the critical expo-
nents governing the low-energy physics were calculated.
The thermodynamics was studied numerically in [5].

The neighborhood of the isotropic fixed point was
further studied by means of conformal field theory [6]
and bosonization methods [7], yielding the long distance
asymptotic s of the correlation functions with critical
exponents that are the same as those characterizing the
thermodynamic functions.

In this paper we present the solution of the channel-
anisotropic model. We shall discuss in detail the case of
two channels and arbitrary spin S, and briefly outline the
generalization for more flavors.

We shall find that in the two channel case the model
generates two scales, T; and T, which we shall later
interpret as associated with two fixed points, the isotropic
and anisotropic, respectively. The scales are explicitly
given (in our cutoff scheme) by T; —= De tj', T, —=

Dcos[(Jt/J2) vr/2]e t ', where D = N/L. Here N is
the number of electrons in each channel, L is the length of
the system, and J~ ~ J2. In the scaling limit D is taken
to infinity with the (bare) couplings' dependence on D

chosen so as to keep the scales finite. The functional
dependence of the scales on the coupling constants
J] and J2 is not universal and may change with the
cutoff procedure. However, the dependence of physical
quantities on the scales is universal. The ratio 5 = T, /T;
is the physical measure of the anisotropy.

The presence of flavor allows up to f electrons to
interact simultaneously with the impurity. Therefore,
spin composites of electrons form irrespectively of the
degree of anisotropy, and their binding energy is set by
the smallest of the couplings. The Hamiltonian must
be regularized with care to allow the formation of the
composites while maintaining integrability. We choose
the regularization scheme used in [3], leading to the
(regularized) first quantized form of the Hamiltonian (1),

2N

h = g[—iB, —A '(8, ) + 2J)8(x,) o; S]. (2)
J=1

Here J, is either Jl or J2. The limit A ~ will be taken
only after determining the eigenvalues. This limiting
procedure, the fusion [3], leads to the formation of the
spin composites. We shall find that the binding energy
will be well above the spin energy scales, and the flavor
excitations will disappear from the low-energy spectrum.

The eigenfunctions of (2) are combinations of plane
waves with pseudomomenta [k, , j = 1, . . . , 2N] and am-
plitudes A„'- „'N depending on the electron spin and
Aavor indices aJ, I, , and the impurity spin index n.
The energy eigenvalues in terms of the pseudomomenta
are F = g, , k, (1 + k, /A), while the amplitudes are de-
termined from the two body 5 matrices, to which we
now turn.

The impurity-electron S matrix is derived from (2),

J J 2+ 1 —iJ (oS+ -).
3+ 1 —iJ ()

J J

where A, = k, /A. Since the interactions are flavor pre-
serving, the S matrix (3) has only a nontrivial term in spin
space.

All electrons are rightmovers, and as there is no
direct interaction between them the electronic states
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are infinitely degenerate away from the impurity. This
permits the introduction of an arbitrary electron-electron
S matrix Sj~ into the definition of the wave functions. To
construct a basis that will manifest the integrability of the
model the matrices Sj& must be chosen so as to satisfy the
Yang-Baxter factorization equations,

~j O~lO~jl ~j l~lO~jO~ ~jk~lk~jl ~jl~lk~jk ~ ( )

The solution for Sj~ can be given as a direct product of
spin and flavor terms, S,I

= SjI S SjI ', with each term
satisfying (4) separately. The spin component of S,i is
given by

(&, + 1/J, ) —(&i + 1/Jl) —lP, l

(W, + 1/J ) —(W, + 1/J ) —l

where Aj = Aj/J, and P, l
= z(cr, crl + 1). The form

of (5) reflects the SU(2),~;„ invariance of the model.
The fIavor component of S,I reflects the breaking of

the SU(2)o„,„symmetry to a residual U(1) when the
anisotropy is present, and is given by [8]

sinv

1+ —(1 + r, e r, )

sinh[~(A, —Al)]+ —, '
(1 —r e r).

2 Sinh[a (A, —Ai) + l v]

Here, (r) are the Pauli matrices, and ~ and v are functions
of the couplings. Denoting p —= v/sc, we shall see that p,
is related to the binding energy of the composites.

Given the set of consistent S matrices we may derive
the Bethe ansatz equations determining the allowed pseu-
domomenta kj and hence the spectrum. Introducing the
auxiliary variables (toy) for the flavor sector, and (gy) for
the spin sector, we find

ikjL ~s —Aj
—1/J~ + i/2

, ; ~, —
W,

—1/J, —l/2

sinh[v(coy —
A, /p, + i/2)]

; sinh[v(coy —Aj/p, —i/2)]

y
—Xg+ t Xy+ tS

j Xy Xg i Xy
—iS

Sinh[v(~op —A, /p, + i/2)]

, sinh[v(cog —A, /p, —i/2)]
'

sinh[v(~oy —olg + i)]
; sinh[v(coy —cop —i))

'

'-" ~, —
W,

—1/J, + l/2

; gy —Aj —1/Jj —i/2 '

describing the full content of the model.
The ground state and low lying energy excitations

consist of solutions in the form of double 2-strings,

A~ = ccPg ~, A =
My

~ . 6

The structure of the double string solution reflects the
Aavor symmetry breaking. In the isotropic limit the two
strings coalesce leading to the SU(2) flavor degeneracy
and the NFL behavior.

The energy associated with the double 2-string is
eq = 2p, tos(1 + jj„ojq/A) —p2A/2, leading to the
1 string hypo-thesis for the (~oy), namely, ~oq = pq/p, A
[3]. We substitute the double 2-string solution (6) in the
eigenvalue equations and take the A ~ ~ limit. This is
the fusion process. We find that the spin contribution
to the energy is F = gz, 2pq, and the spin degrees of
freedom are described by the following system of fused
Bethe ansatz equations:

X&

~y + l5 (yy —1/J2 +
Xy

—iS (yy 1/ J2

k~, —1/J2

2(1 + p)) (gy —1/J2 +
-(1 + p) j (~ —1/J2-
+ —,'(1 + q)b fgy —1/J2
—2(1+ V)) (gy —1/J2

with P —= p, /J2 and p
—= p, /Ji. As the binding energy

is set by the weakest coupling, p, is related to J], and
in the scaling limit we find p, = Ji, @ = Ji/J2, and
cp = 1. Note that the equations reduce to the isotropic
equations for P = Ji/J2 = 1 and to the one-channel
Kondo equations for P = 0, Ji = 0.

We now solve the equations, identify the ground state
and excitations, and, summing over the latter, derive the
free energy. The main results are the following:

(i) The solutions of the equations are of the form given
by the string hypothesis valid in the thermodynamic limit,

= ~q + 2(n + 1 —2k), k = 1, . . . , n, ~q real.

(ii) The ground state is composed of g 1- and 2-strings,
interpolating between the isotropic model (where @ = 1

and the ground state built of 2-strings leading to NFL
physics), and the single channel model [where P = 0 and
the ground state is built of 1-strings describing a Fermi
liquid (FL)].

(iii) The impurity free energy for impurity spin 5,
anisotropy 5, temperature T, and magnetic field h is

In[1 + ~„(g,h/T)]
27r cosh[/ + ln(T/T;)]

'

The function yj2s(g, h/T) belongs to the set of functions
(yj„) satisfying the following set of coupled integral
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equations, here written in the scaling limit (D ~ ~,
keeping T;, T, fixed):

InrI2 = —e~ + G ln(1 + r/l) + G ln(1 + 213),

and G are defined by the kernels n/2'[($' —g)2 +
(n/2) ] and 1/2cosh[7r($ —$')], respectively.

1 pl= —2b ~ Gl 1
We now elaborate on (iii). We studied analytically the

equations in the limits of small and large anisotropy, both
for 5 = 1/2 and for 5 = 1, and deduced the infrared be-
havior of the thermodynamic functions and its dependence
on the anisotropy A.

with boundary conditions lim„([n + 1] ln(1 + rl„) — The 5 = 1/2 impurity contribution to the free energy at

!

[n] ln(1 + 71,+l)) = 2p, h/—T. The integral operators [n] low temperatures is given by

2

2 [( y, l/2 g yi, l/2 ln b) ~ ', l/2( ) Inb] z',

Fz=, /2
—' —

2 ln2 + 2[y, l/2 + cu; l/2(z. ) ] z. ln z, + 6(z ) +
T2—

—,(1 ——,)[y.. / + ., /. (-,)'+ 6(b ')] —,

T«Ta =Ti' -5«1
6(b —,), T. «T «T;

T « A»1

where y, l/2 = vr/6, cu, l/2 = I/vr are the coefficients for
the specific heat and susceptibility of the 5 = 1/2 single
channel Kondo model, y, l/2 = 7r/4, co; l/2 = 2/7r are
those of the 5 = 1/2 two-channel isotropic model, and
6 is a constant close to 1.

The free energy yields the susceptibility and the specific
heat. We find, for any 6 ) 0, a linear specific heat
and a temperature independent susceptibility. Therefore,
any small amount of anisotropy moves the system away
from the isotropic fixed point. In particular, the 21n2
contribution to the T = 0 entropy that appears in the
isotropic case [3] is no longer present. However, for small
anisotropy the behavior of the system in the temperature
range T, = 6T; ( T ( T; is identical to that of the
isotropic case, and the isotropic NFL behavior reemerges

upon setting b = 0. For large anisotropy, on the other
hand, the leading terms of the thermodynamic functions
are those of the 5 = 1/2 single channel model with T,
playing the role of the Kondo temperature.

Computing the ratio R,

6=0,
R](2 = —Shlnd, 0(5 «1,

2+ 6(be ~), b»1,
x'/x'
C' /C„'

we again conclude that turning on the anisotropy destroys
the NFL behavior of the isotropic model, while the 5 = ~
single channel FL is only weakly modified upon reducing
the anisotropy.

We now turn to S = 1. The impurity free energy and

!

R have the following low-T expressions:

Fs=i

T2—2{[y; l + ~; l(r)'] —[n + P(r)'b Inb] e '
T2—((I + —")[y., l/2 + ~,1/2(

—)'] + 6(e ')) —,,
T2—[~'+ p'(r)'~] ~,

—(r)'i.r/r,

T «AT;, A«1
T«T;,

- d»1
TE « T « ATi

—, +6(e '/~), b«1,
2+6(e ~), b»1,

where now n, n', P, P', and c are constants of order 1,
and y; l

= 2r/2 and cu; l
= 4/7r are the coefficients for the

specific heat and the susceptibility of the S = 1 isotropic
model.

When T; = 0 and T, is finite, the system behaves as
a single channel Kondo model with S = 1, describing
at low temperatures a partially screened spin. As J]
is turned on (b» 1), the system undergoes another
Kondo screening, as can be seen in the temperature range
T; « T «AT; = T, and ends up in the infrared as
a combination of two screened 5 = 1/2 single channel
models.

We also carried out a numerical solution over the whole
range of anisotropy and temperature (Fig. 1). Note (e.g. , in
the spin-1/2 case) the two stage quenching of the ln2
high-temperature entropy when T, ~ T;. For T ) T; the
quenching occurs in one step at T . Similarly, the two

peaks present in the specific heat for 5 ~ 1 merge and
move with T, as 5 is increased past 1. Related observa-
tions apply also in the spin-1 case as 5 is reduced past 1.

We turn now to interpret our results in terms of fixed-
point Hamiltonians. Clearly, we reach two different fixed
points, the isotropic i and the anisotropic a when we set
6 = 0 and 5 = ~, respectively. Both fixed points have
directions of instability: in the screened case a is unsta-
ble to turning on Jl (T; ) 0), while in the overscreened
case i is unstable to turning on the anisotropy (T, ) 0).
Where do the trajectories flow to? The evidence thus far,
while consistent with i being the end point in the former
case and a in the latter, also suggests the exciting possi-
bility (with several phenomenological implications) of the
trajectories ending on lines of fixed points labeled by 5,
with FL behavior in the screened and NFL behavior in.the
overscreened case [9]. The anisotropy dependence of the
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FIG. 1. (a) Entropy, (b) specific heat, and (c) zero field
susceptibility for S = 1/2 as a function of T/Trf for different
values of the anisotropy parameter b, = T, /T; (d) and (e. )
Same as (a) and (b), now for S = 1. (f) Zero field susceptibility
at T = 0 as a function of the anisotropy parameter A.

thermodynamic coefficients is then due to marginal rather
than irrelevant operators. To completely resolve the issue
it is necessary to calculate the asymptotics of the correla-
tion functions. This work is in progress.

The structure of the thermodynamic equations reflects
the fiavor symmetry breaking and generalizes to any
number of fiavors. The various patterns of the SU(f)-
symmetry breaking and their relative strengths will be
parametrized by energy scales T„= Dg„(ji, . . . , Jf),
n = 1, . . . , f. The scales set the excitation energies and
momenta and appear in the thermodynamic equations,

T—r" e~ + G ln(1 + zl„ i)
Inzl„= - +Gin(1 + zl„+i), n~f,

Gln(1 + zl„ i) + Gln(1 + zl„+i), n ) f,
with g0 —= 0. As an illustration we discuss the
three-channel problem, with scales T&, Tz, and T3.
The isotropic case is characterized by T3 ) 0,
T1 = T2 = 0. The low-energy physics is NFL for
S ( 3/2 with C„—T~/~ and zero-temperature entropy
5 = in[sin(2S + 1) 7r/5]/(sinzr/5). When the symmetry
is broken to SU(2) x U(1), a new scale appears. When
T~ ) 0 and T2 = 0, the models with S = I/2 and S = 3/2
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show linear T dependence in C, and constant ~, with
different coefficients for the T& ) T3 and T1 ~ T3 regions.
The 5 = 1 case is more interesting, since there is a change
from linear T dependence to NFL behavior, and a residual
T = 0 entropy emerges as the parameters of the system
are changed from T1 ~ T3 to T3 ~ T1. When T1 = 0,
T2 ) 2, and S = 1/2, we have two different NFL fixed
points for T2 ( T3 and T3 ( T2 with different values of
the residual entropy; the S = 1, 3/2 cases have constant
C„/T and y. Finally, when all the scales are finite, the
system has constant C /T and ~ for S = 1/2, 1, 3/2, with
the coefficients depending on the relation between the
T; and with intermediate temperature regions where the
properties of the thermodynamic quantities correspond to
those described in the previous cases. These considera-
tions generalize for any number of fiavors f.

In forthcoming work we study the competition between
strength of the couplings and the size of symmetry break-
ing. We also consider the role of the generalized fusion
mechanism in the two-impurity Kondo model, and in mod-
els [e.g. , with O(N) symmetry] giving rise to new types of
fixed points. Finally, we shall discuss some phenomeno-
logical implications.

We received two preprints [10]addressing the model by
means of bosonization and the Anderson- Yuval approach.
While there is a considerable overlap with our work,
there are also interesting differences. For example, the
crossover from a two-scale to a one-scale dynamics at
5 = 1 is not seen.
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A. Gogolin, J. Moreno, and A. Ruckenstein for en-
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