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Crossover from Non-Fermi-Liquid to Fermi-Liquid Behavior in the Two Channel Kondo Model
with Channel Anisotropy
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We present a solution of the two channel Kondo model with channel anisotropic exchange
couplings. The solution provides an analytic description of the crossover from a high temperature
regime, dominated by the non-Fermi-liquid behavior of the isotropic two channel Kondo model, to
a low temperature regime characterized by the standard Fermi-liquid behavior of the single channel
Kondo model.

PACS numbers: 71.28.+d, 75.30.Mb

Among the known realizations of non-Fermi-liquid be-
havior which are currently the subject of many theoretical
and experimental investigations, an important role is being
played by a class of generalized Anderson impurity mod-
els. Their common feature is a non-Fermi-liquid regime
due to a degeneracy of the impurity lowest energy lev-
els which cannot be completely lifted by the coupling to
conduction electrons. This leads to various anomalous
properties, for instance, a nonanalytic temperature and ex-
ternal field dependence of the impurity contribution to the
free energy. Such a behavior is evidently unstable to any
perturbation which eliminates the residual degeneracy. In
this case the low temperature regime should show standard
Fermi-liquid properties. Nevertheless, if the magnitude of
the energy scale associated with such a perturbation is suf-
ficiently small, a slow crossover from the non-Fermi- to
the Fermi-liquid regime is expected to occur as the tem-
perature is lowered.

In this Letter we give a detailed analytic description
of such a crossover in the prototype of these non-Fermi-
liquid impurity models, the two channel Kondo model.

The general multichannel Kondo model has been
worked out to describe the low temperature behavior of
a magnetic impurity with orbital structure embedded in
a metal (see Ref. [1], and references therein). Besides
dilute magnetic alloys, many other physical realizations
of the multichannel Kondo model have been proposed
including two level systems in metals [2], heavy fermion
compounds [3], and high T, superconductors [4].

The model is described by the Hamiltonian
W

g Ho(4-. 0.'.) + g J S'PJ.(o)~.'I P.t (o), (I)
a=1 i =x,y, z

which represents an N-times degenerate conduction band
with kinetic energy

HO(t/t~ t/ ) g +kPk fk ~ (2)

coupled, for simplicity at the origin, to a magnetic
impurity spin 5 via an antiferromagnetic coupling 1;. In
what follows we consider a spin-1/2 impurity.

A perturbative approach supplemented by a renormali-
zation group (RG) analysis shows that the conduction
electrons tend to screen the magnetic impurity, since the
system does not like to sustain the impurity spin degen-
eracy. This tendency shows up through the exchange
flowing towards strong coupling under RG process. The
complete screening is, however, possible only for the sin-
gle channel (N = 1) model, where the single conduction
electron can indeed form a singlet with the impurity, thus
freezing the impurity spin degree of freedom. This corre-
sponds, from the RG point of view, to the case in which
the model Aows to the infinite exchange fixed point. The
behavior of the system around this point is well under-
stood [5,6]. The impurity contribution to the magnetic
susceptibility g; and to the ratio of the specific heat to the
temperature Cv, /T are both finite at zero temperature, as
in a usual Fermi-liquid.

On the contrary, two (and more) channels are unable to
lift the degeneracy (they tend to overscreen the impurity
spin). The effective exchange flows in this case towards
an intermediate coupling fixed point. Its existence has
been proven and, in the case of large number of channels,
analyzed in Ref. [1]. The proof relies on the fact that both
the zero and the infinite exchange fixed points are unstable
for more than one channel, hence a stable fixed point
at intermediate exchange and non-Fermi-liquid behavior.
The properties of the model around this fixed point for
any number of channels has been analyzed by various
techniques [7]. For N = 2, which is the case we are
interested in, it was found (see also Refs. [8,9]) that

g; (T) —Cv; (T)/T —ln(1/T) at low temperature, and
that the system has a residual entropy ln(2)/2, as if half of
the impurity spin degrees of freedom are decoupled from
the conduction electrons.

It is important to notice that this behavior occurs only
if there is no criteria for the system to prefer one of the
channels or one of their linear combinations [1]. In the
opposite case, the system will always choose the channel
with the strongest exchange to screen the impurity, and
the usual Fermi liquid behavior of the single channel
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model will finally take place at zero temperature. In order
to study how this happens in detail let us introduce a
channel anisotropy by adding to the Hamiltonian (1) for
N = 2 the term

~ J s' 0t (0)tT' pftp(0) —fz (0)~' p02p(0), (3)

with the dimensionless parameters 0 ~ A; ~ 1 controlling
the strength of the anisotropy: A; = 0 corresponds to the
symmetric two channel Kondo model, A; = 1 to the single
channel model.

The RG liow diagram in the (J, A) space is sketched
in Fig. 1 showing that any finite A flows to unity and,
therefore, the system asymptotically has single channel
properties. The smaller the A, the slower is the crossover
from two to single channel behavior. Apart from these
scaling arguments, not much is known on the channel
anisotropic Kondo model.

Recently, Emery and Kivelson (EK) [8] realized that
for a particular value of J„but arbitrary J = J~ = J&,
the symmetric two channel Kondo model maps onto a
resonant level model. We will show that the channel
anisotropy (3) can be accounted for by introducing
another term in the effective resonant level model, which
nevertheless remains solvable. We use the approach
originally developed by Yuval and Anderson [10] for
the single channel case. This method is similar to the
bosonization technique of EK, but it is more rigorous not
relying on a linearized electron spectrum.

Let us start from the simple case of A, = 0 but A& 4 0,
and, as a first step, diagonalize the Hamiltonian (1)keeping
only the z component of the exchange J, . The remaining
transverse exchange is then treated by perturbation theory.
For instance, at second order in the transverse exchange
one has to calculate expressions of the kind

&11 s'(r)~. (r)s (o)~.+(o) ID,

where If) is the ground state of the conduction elec-
trons with the impurity spin being up, and a-' =
Pt (0)o.'

pg, p(0) (a = 1, 2). Yuval and Anderson
showed that such correlation functions could be calculated
making use of the solution of the x-ray edge singularity
[12]. Following them, we find the contribution —J2~:

&11 s'(r)~. (r)s (o)~.'(o) 11&
—

—,„, (4)

FIG. 1. Qualitative (J, A) liow diagram for the channel
anisotropic two channel Kondo model: A = 0 is the channel
isotropic case, A = 1 corresponds to the single channel model.

with

g =2 1 —2 — +8N —1

where the phase shift 6 = tan '(7rvoJ, /4). vo is the
one spin, one channel density of states of the conduction
electrons at the Fermi energy, and N the number of
channels. For N ~ 2there exists avalueof J, such that the
dimension of the spin Hip operator g = l. In particular,
for N = 1 this value corresponds to the phase shift 6 =
7r(1 —I/~2)/2, while, for N = 2, 6 = 7r/4 For N ) 2.
there is no J, such that g = 1, therefore the method does
not work so simply.

On the other hand, let us consider a single band of
conduction electrons %" coupled to an impurity d via
single particle operators of the form h[+t(0)d + H.c.]
and 6['Pt(0)dt + H.c.]. The impurity energy level is
located at the Fermi energy. A perturbation expansion in
powers of these single particle operators generates terms
like

&lid'(r) +(r)+'(i)dI» ——,1

i '

where 11) is the ground state with the impurity level occu-
pied. This correlation function behaves as (4) for rj = 1.

The nontrivial step is to show that the two perturbation
expansions, for the Kondo and the resonant level model,
coincide not only in the second order, as we have
just shown, but in any order of perturbation expansion
(provided the parameters h and b, are appropriately
chosen).

For N = 1 and 6 = 7r(l —I/~2)/2 the resonant level model corresponds to the well-known Toulouse limit [13] (see
Ref. [5])

H, (q, q, t) + ' cos'(p) Qv g [q, t(p)d + dt's, (p)] (6)

while for N = 2, 6 = vr/4 and in the presence of channel anisotropic transverse exchange the equivalent resonant level
model reads [11]

H = Ho(%", 'Ij't) + cos (6)v voto['If (0) + 'P(0)](d —d ) + Ai cos (6)/voto['0 (0) —%(0)](d + d ), (7)
2 '2

where $0 is a high-energy cutoff related to the bandwidth. In the channel symmetric case (A~ = 0), the Hamiltonian (7)
reduces to that discussed by EK [8].
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The mapping can still be performed in the general case
g @ 1 and A, @ 0. First we define the scattering phase
shifts 6 and 6' by

tan(6 ~ 8') = '
(1 ~ &,),4 (8)

so that finite A, implies finite 6'. In order to account for
a 6' 4 0, one has to add to (7) the interaction term

y dtd @at pqpp (9)
2

where V = 2/(2rvo)tan(26'). The deviations from 6 =
7r/4 can be accounted for by adding to (7) another
interaction term

V did —— I' t(0)'Ir (0)
1

where

2
cot(26),

7T V0

and 'P, is a new free Fermi field with a kinetic Hamilton-
ian Ho(%„%"t) [see Eq. (2)] [14]. Above we have out-
lined the mapping of the two channel Kondo model (1)—
(3) to the interacting resonant level model (7)—(11); the
detailed derivation of this mapping, as well as the gener-
alization of the Yuval-Anderson approach to the case of
arbitrary N, is described in Ref. [11].

We would like to point out an interesting outcome of
the Yuval-Anderson method applied to the two channel
Kondo model which is out of reach of bosonization
techniques. It is easy to see that, in the channel isotropic
case, the model is symmetric under 6 ~ rr/2 —6 [this
is clear from the definition of q, Eq. (5)]. This extends
the result of Ref. [1] that the two channel Kondo model
behaves similarly around J, = 0 (i.e., 6 = 0) and around
J, = ~ (i.e., 6 = 7r/2). By symmetry the fixed point
should be exactly at 6 = 7r/4

We now analyze the model for A, = 0 and 8 = vr/4.
(One can show that a small A, 4 0 does not modify
essentially the solution; it only makes the crossover
faster. ) In the case originally considered by EK (A; =
0), the combination d + dt was decoupled from the
conduction electrons [see Eq. (7)]; this caused the residual
entropy. The anisotropy A& 4 0 provides a coupling
between this combination and the conduction electrons.
In the Nambu representation Dt = (df, d), the impurity
Green function

Gd(t) = —i(T[D(t)D (0)])

is a 2 X 2 matrix. Its Fourier transform can easily be
evaluated. For cu much smaller than the bandwidth, we
find

&0 &x 1 70 + 7x
Gd(~) = . +

2 ~ + il sgnco 2 m + i A~I sgnco

(12)
where the resonance width I = 7r voto J~ cos (6), j.; be-
ing the Pauli matrices, and 7-0 the unit matrix. The impu-

rity spectral function is

1 „„ I" 1
A(co) = —(ro —r, )

2 ' . 2+r2 2
+ —(ro + r.)

~2+ X4r2 '

and it is therefore equally shared by two Lorentzians with
different widths I and A2~I . In the channel isotropic
case A& ~ 0, one of the two Lorentzians tends to 6(cu),
representing the impurity degree of freedom which is
decoupled from the conduction band in this particular
limit [8].

The impurity contribution to the free energy can be
calculated in a standard way by integration over the
coupling constant. The result is

dr22
(

I )(A2 IF = Fo + f(cu) tan ' — + tan
27T CO (")

where F0 is the free energy in absence of coupling
between the impurity and conduction electrons, f(ru) is
the Fermi distribution function and the integral should be
limited to the conduction bandwidth. The entropy can be
calculated by S(T) = —BF/rlT By de. fining

S (T)=
2+ T ( 2 2m T ))

I (-, + y/2~T)—ln

where P(z) is the psi function and I (z) the gamma
function, the entropy turns out to be S(T) = ln(2) +
Sr(T) + S~2r(T); see Fig. 2. We see that S(0) = 0, as
expected since no degeneracy is left at T = 0, but there
is a region of temperatures (the wider the smaller A & is)
where the entropy is close to that of the symmetric two
channel model.

Another quantity of physical interest is the longitudinal
impurity susceptibility. It has been shown that, exactly on
the EK line, g," = 0 and one has to consider deviations
from this line in order to account for a finite impurity
susceptibility [9]. In our case, this amounts to adding to
the Hamiltonian (7) a term [11]

1
6H = p, epoch&

1n(B)~
.6

4
M

0

FIG. 2. Entropy S(T) for various values of the anisotropy A2:
from the top A = 0, 0.1, 0.5, 1.
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where h, is the infinitesimal longitudinal magnetic field
and p, tt = 46/7r —1. For the impurity susceptibility we
find

main goal of our solution is to give an analytic description
of this crossover [16].

We are thankful to N. Andrei for helpful discussions.
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In the case A& « 1 the susceptibility shows the same kind
of crossover behavior as the entropy:

2 1 1
2 ln, T«A~I,~I 1 —g~ Ag

1 1 I, ln —, A'I «T«I",
ml 1 —P~ T

1 T» l .
4T '

As expected the magnetic susceptibility saturates at
low temperature, although at intermediate temperatures
it shows the logarithmic behavior of the two channel
Kondo model.

To our knowledge, the two channel Kondo model
is most convincingly realized by two level systems in
metal alloys [2]. This has recently been experimentally
confirmed thanks to the development of the point contact
spectroscopy [15]. In these systems, the role of the spin
is played by some orbital degree of freedom, while the
physical spin plays the role of the channel index. Thus
the model is by construction channel isotropic. However,
an external magnetic field breaks the channel symmetry
and generates an effective A proportional to the curvature
of the conduction electron band times the magnetic field
B. Consequently, B causes the crossover to a Fermi-liquid
behavior at low temperature as observed in Ref. [15]. As
to the physical magnetic susceptibility, it is the second
derivative of the free energy with respect to A, and can be
shown to be y ~ In[Max(Bz, T)].

In conclusion, we have presented the solution of the
two channel Kondo model in the presence of a channel
anisotropic transverse exchange for a particular value of
the longitudinal exchange. The most interesting feature of
this model is that for sufficiently small anisotropy it shows
a slow crossover from the non-Fermi-liquid behavior,
characteristic for the isotropic two channel model, to the
Fermi liquid behavior of the single channel case. The
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