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We calculate the interliquid conductivity for Luttinger liquids, within the so-called “confinement”
regime where interliquid hopping is completely incoherent. We argue that the interliquid conductivity

behaves as o, (w) ~ w**, where « is the Luttinger liquid exponent.

We discuss the effect of finite

temperature, which is found to introduce a coherent weight into the conductivity. These results are
in good agreement with experimental measurements of the frequency dependent normal state c-axis
conductivity in the high-temperature superconductors YBa,Cu;0;-5 and La,_,Sr,CuOy,.

PACS numbers: 71.27.+a, 72.10.—d, 74.25.Fy, 74.72.-h

One of the more important yet less frequently discussed
anomalies observed in the normal state of the cuprate-
based high-temperature superconductors (HTSC’s) is the
c-axis conductivity o.(w,T). By comparison, a great
deal more attention has been given to understanding
the anomalous behavior of the in-plane conductivity
o0, T) ~ (0 ', T7Y. It is a remarkable fact, given
that the structures and chemistry of HTSC’s can vary
a great deal outside of the common CuO, planes, that
o (w,T) is an almost universal function over the HTSC
family. In striking contrast to this, there is no single
expression for o .(w,T) with wide applicability. Various
empirical fits for the interplane dc resistivity, p.(7T),
involving combinations of functions proportional to 1, 7,
T7!, T77, and e*/T have been made, the fit differing
from material to material. It might be argued that this
is not to be entirely unexpected since p. probes motion of
electrons in the interplane direction, the nature of which,
as stated above, varies considerably over the HTSC
family. The challenge to such an attitude, however,
is to demonstrate how the interplanar chemistry and/or
structure can be such as to lead to c-axis conductivities
well below the minimum metallic conductivity given by
the Mott-loffe-Regel limit [1] and, more alarmingly, a
positive derivative in temperature, do./dT > 0, observed
in many HTSC’s over a wide temperature range above
T.. Were it not for the intervention of superconductivity,
one would have a situation in which o,,(T)/o.(T) would
increase, apparently without bound, as 7 — 0. Within
a Fermi-liquid picture, anisotropy alone cannot account
for such a situation. However, the in-plane properties
of HTSC’s are not those of a Fermi liquid. One is thus
led to the almost inescapable conclusion that the unusual
behavior of o, is intimately connected to the non-Fermi-
liquid properties of the 2D electron fluid in the cuprate
planes. This is the starting point of the “confinement”
hypothesis advanced several years ago [2—4].

Considerably more information about c-axis transport
can be obtained by going beyond the measurement of
dc conductivities. Recently, experimental determinations
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of the frequency dependence of the c-axis conductivity
on the eV scale have been made in YBa,Cu;0,-5 [5]
and La,_,Sr,CuO, [6]. These experiments demonstrate
unambiguously the absence of any Drude-like term in
the electronic contribution to o.(w) [7]. There is an
enormous loss of spectral weight at low frequencies. In
the samples studied, o.(w) is a very slowly increasing
function of w over a wide frequency range. Again, most
samples exhibit a dc conductivity below the Mott limit,
when the data are extrapolated back to w = 0.

The absence of a Drude-like term in o.(w) vindi-
cates the confinement hypothesis of the normal state of
HTSC’s: single particle hopping in the interplane direc-
tion is completely incoherent. There is no band formation
in the ¢ direction, and as a consequence there is the po-
tential for interplanar pair tunneling to give rise to a large
kinetic energy gain and drive a mechanism for a high T,
[2,4,8].

The challenge to any candidate theory of the normal
state of HTSC’s is to explain how confinement can
come about. In a recent paper [9], we have presented
a strong argument for the existence of a coherent-
incoherent (or ‘“confinement-deconfinement”) transition
for single particle hopping between spin-charge separated
Luttinger liquids. In this Letter we shall further this
work to calculate the interliquid conductivity in the
confinement regime. The connection to the HTSC’s is
made via the hypothesis that the electronic low energy
physics of the cuprate planes is described by a 2D spin-
charge separated tomographic Luttinger liquid [4]. In
order to be able to perform definitive calculations we
shall here restrict attention to the analogous problem in
one dimension where the electron Green’s functions are
rigorously known.

In this Letter then we shall consider the problem of
determining the interchain conductivity for a system of
weakly coupled Hubbard chains. The low energy physics
of a 1D Hubbard model, with parameters (7, U) as usually
defined, is that of a spin-charge separated Luttinger liquid.
Denoting the Hamiltonian for the Luttinger liquid on
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chain i by H(L’i we have

H =3 HiL + 1 D {cly(eino () + Hed. (D)

We have previously argued [9] that in a system governed
by (1), and for sufficiently small 7, electron motion in the
interchain direction is completely incoherent. As such,
the Fermi surface retains a one-dimensional form and
there is no coherent interchain electron velocity. The un-
derlying reason for this is that the interchain hopping term
in (1) hops real electrons, however, the exact eigenstates
of Hyy are not electronlike. Instead of exhibiting a sharp
delta-function peak, the electron spectral function p(k, w)
of (1) has power law singularities at w = *v k, vk, a
result of spin-charge separation and the infrared orthogo-
nality catastrophe induced upon insertion of a single elec-
tron into the liquid [10]. As a result, in contrast to a
noninteracting electron gas, in which all interchain hops
are elastic, electron hopping between Luttinger liquids
is a mixture of elastic and inelastic processes, the lat-
ter involving virtual transitions over an energy range
AE ~ 1/t. Of course, even for the case of single electron
hopping between Fermi liquids there will be inelastic pro-
cesses due to the incoherent part of the electron spectral
function. However, in a Fermi liquid the coherent “quasi-
particle” part of the electron Green’s function G(k, ¢) has a
lifetime ~ (k — kr)>. As shown, e.g., in [11], in this case
the quasiparticle part long outlives the incoherent con-
tribution to G(k,1) as k — kr — 0. Coherent interchain
hopping results. In marked contrast to this, for coupled

Luttinger liquids, and sufficiently small ¢,, spin-charge
separation implies a width of the electron spectral function
~ (k — kg) > (k — kr)?, and this, in combination with
interference between inelastic and elastic processes due to
the orthogonality catastrophe, leads to the destruction of
any signal of coherent interchain hopping [9]. Coupled
with the Luttinger liquid hypothesis for HTSC’s, this of-
fers a natural explanation for the anisotropic transport ob-
served in those materials, and significantly elucidates the
proposal of “confinement” originally made on the basis of
such transport data. We believe that such a regime will
be ubiquitous to any sufficiently anisotropic, strongly cor-
related system, not just the cuprate superconductors. In-
deed, we have argued elsewhere [12] that the anomalously
rapid 3D to 2D crossover observed in the magnetoresis-
tance of the (highly anisotropic) organic superconductor
(TMTSF),PF¢, as a function of applied magnetic field,
is a manifestation of the coherence-incoherence transition
discussed in [9].

In the light of this result, we proceed to calculate the
interliquid conductivity in the confinement regime. As in
[9] we introduce the probability P(z) that at time ¢ > 0 the
system is in the < 0 ground state,

2

P(1) =l <]—[ O;le™ M| ﬂ 0,->
0

where |0;) is the Luttinger liquid ground state of Hy|,
t;, = 0 for t < 0; hence the ¢+ < 0 ground state is |[]; O;).
It is simple to show that, to O(:2), the effective rate of
hopping out of a given chain is given by

2
s

—dl;it) = I'(r) = 42 LRe fota’t’{f dx G.(x,t — t"Gp(x,t — t’)}, 3)
where G, (x,t) = {c(x,1)ct(0,0)) and G(x,1) = {cT(x,1)c(0,0)). Equivalently,
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where p(k, w) is the Luttinger liquid spectral function.

P(¢) and consequently I'(r) may readily be generalized
to finite temperature via the usual Boltzmann weighting,
the ® functions in (4) being replaced by Fermi functions.
The advantage of (4) over the space-time formalism of (3)
is that it gives a more physical expression in terms of the
electron spectral function and is simpler to use at finite
temperature.

Let the chains be stacked a distance d apart along
the z axis. We wish to calculate the interchain current
induced by an electric field E parallel to 2. For E =
0 there is of course no net current, Eq. (4) describing
incoherent motion of equal magnitudes into and out of
a given chain. To determine the current in nonzero field
we first observe that in the confinement regime interchain
motion will be completely diffusive. We may write a
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| constitutive equation for the interchain diffusion current
Jp generated by a particle density gradient

Jp(z, 1) = —fo dt'D(t — t')aizn(z,t’). )

Here n(z,t) is the particle density on the chain at z, and
D(t — t') is the diffusion kernel to be determined.

To zeroth order in ¢, , if two adjacent chains differ in
particle number by AN, then their Fermi momenta differ
by Ak = w AN/L. However, as was shown in [9] even
for AN ~ O(L/a), where a is an in-chain length scale
proportional to the lattice spacing, the additional terms
introduced into I'(¢z) are rendered incoherent. Now, any
physical particle number gradient will have AN only O(1).
We therefore believe that it is correct to argue that, to



VOLUME 74, NUMBER 22

PHYSICAL REVIEW LETTERS

29 MAy 1995

O(t?), all hopping occurs at the incoherent rate given by (3) and the diffusion kernel is therefore given by

D(t — t') = 4t>dRe foldt’{[ dx G,(x,t — t")Gu(x,t — t’)}, (6)

which has the long time asymptotic behavior D(f) ~ | introduced into the conductivity o, (w,T) by this linear-

1/t1+4a.

Thus for a density gradient fluctuating at frequency
w, Jp(w) = D(w)Vn(w) with D(w) ~ w**. Utilizing the
appropriate Einstein relation to connect o.(w) to D(w) we
finally arrive at the following expression for the interchain
conductivity:

2 2 4a
-l L)) o
In writing (7) we have taken v. > v, for simplicity,
where v, refers to the charge and spin velocity, respec-
tively. This corresponds to the limit U/r > 1 of the
Hubbard model. Generically, we may replace the factor
2 Jv.vr by ~a’2ti/tﬁ‘

For the 1D Hubbard model, 0 < 4a < % so that the
power law behavior of o, (w) is very weak—almost
frequency independent. Within the Luttinger liquid hy-
pothesis we expect this weak power law behavior to be ap-
plicable to the normal state interplane conductivity of the
HTSC’s. Indeed a very flat frequency dependence of the
c-axis conductivity has been observed in YBa,Cu;O;_s
[5] and La,_,Sr,CuO, [6]. In fact, a power law fit to
the intermediate frequency data for YBa,Cu;0; yields a
2D Luttinger liquid exponent % Sda = % which, while
perhaps being a little larger than what one might ex-
pect, is not at all unreasonable. A similar fit to the
electronic component [13] of o.(w) in La,¢SryCuQO,
from [6] yields a similar exponent. Moreover, substitu-
tion of typical parameters ¢, , #), etc. for these HTSC’s
into the 2D generalization of (7) yields conductivities
in reasonable quantitative agreement with those observed
experimentally [14].

The expression (7) should be approximately valid over
a range of intermediate frequencies 1|, < w = t),U. Our
perturbative calculation cannot say anything precise about
the low frequency region, w < ¢, but we expect on self-
consistency grounds that o, (w) would approach a small,
but nonzero, value as w — 0. At very high frequencies
w = t), U we expect on very general grounds that o | (w)
must eventually cross over to an w ~2 behavior.

We now turn our attention to thermal effects. Intu-
itively, one would expect that temperature will enhance
the possibility of coherent hopping since it will cut off
long time orthogonalities. This is indeed the case: evalu-
ation of (4) at nonzero temperature yields the result

()G e
2 al VAL Tt + incoherent. (8)

Note that this type of term is not affected by spin-charge
separation, and can therefore be expected to persist to
long times (i.e., t = ¢,). However, the coherent peak

in-¢ term will generally still be broadened, so that it is
a nontrivial matter to deduce even the dc conductivity
o, (w=0,T) from (8). We believe that the correct
interpretation of (8) is that it approximately prescribes the
total coherent weight in the sense that

facfh(w,T)dw ~ae—2ad< i >T( r )M. )

h V. UFR Av,

Thus, 0%"(w = 0,T) will be determined by the way this
weight is broadened in frequency.

Finally, we remark that Eq. (8) is strictly valid only for
times satisfying 7¢ < 1. Within perturbation theory we
therefore require T < ¢,. However, the complementary
regime T = ¢, can be dealt with within standard incoher-
ence theory, since the in-liquid scattering rate 1/7) ~ 7.
One finds in this case [4,15] that p, (T) ~ (¢, /t))*p(T)
so that p , (T) is linear in T. Such a high-temperature be-
havior is a common property of HTSC’s. We emphasize,
though, that it is completely misleading to use the term
“metallic” to describe such a temperature dependence of
the c-axis resistivity: it is the result of incoherent inter-
plane transport, of the more standard type than that argued
to take place within the confinement regime.

Our calculations should be most applicable to single-
layer HTSC’s such as La; ,Sr,CuOy. In the multilayer
materials the situation is complicated by the existence
of two types of t,: an intracell one, ¢, coupling the
“cells” of n closely spaced CuO, planes, and an intercell
one, " which hops electrons between the cells. In
the bilayers particularly, it is not inconceivable that
intracell, interlayer superexchange terms are generated
and may be responsible for the “spin-gap” signature in
o.(w) [16]. The point is that since the simple interliquid
hopping term leads to only a very small conductivity
at low frequencies (in particular, the zero temperature
dc conductivity is very small, if not zero) the observed
low frequency conductivity will be largely determined
by whatever other interplane physics is involved in the
real materials. Thus, it is not surprising that a universal
behavior is not observed in the dc conductivity of the
HTSC’s. This is one of the few places where interplane
chemistry or structure is important, but only insofar as
it determines the details of o, not the general fact of
confinement.

From a pedagogical point of view it is worth remarking
that there is some superficial similarity between the
confinement phenomenon and the old Schrieffer theory
of tunneling through an insulating barrier [17]. Indeed,
Eq. (4) is strongly reminiscent of the Schrieffer tunneling
formula. The crucial difference, however, is that in
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insulator barrier tunneling incoherence is introduced by
the barrier (transverse momentum is not conserved in the
tunneling process), while in Luttinger liquid tunneling the
tunneling process itself generates the incoherence. We
note, too, that one corollary of our theory is that the
very theory of tunneling must be rethought with respect to
c-axis tunneling into a HTSC above 7.. This is because
the derivation [1718] of the Schrieffer tunneling formula
assumes the existence of a good momentum quantum
number in the direction normal to the interface, a property
which does not exist in the confinement regime.

In summary, we have addressed the issue of determin-
ing the conductivity o, (w,T) between Luttinger liquids
in the confinement regime. Within a model of coupled
1D liquids we have argued that, for a large range of inter-
mediate frequencies, o | (w, T) follows a weak power law
behavior as given in (7). We expect such a result to gen-
eralize to higher dimensions. Indeed, this weak power law
behavior is both qualitatively and quantitatively consis-
tent with experimental observations on YBa,Cu;07-5 [5]
and La,_,Sr,CuQy, [6]. The effect of nonzero temperature
is to introduce a coherent component into o, (w,T) with
total weight o (¢, /1)?T!***. For temperatures T = ¢,
the system enters the conventional incoherence regime in
which the in-liquid scattering rate exceeds the interliquid
hopping rate, and one finds p, (T)/py(T) ~ (¢, /1%

Finally, we remark that in the light of these arguments
and those presented in [9,12] it would be of great interest
to examine the conductivity along the weakest hopping
direction in the quasi-1D and -2D organic conductors.
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