³He Mobility and Localization in Thin ⁴He Films

D. T. Sprague,* N. Alikacem,[†] and R. B. Hallock

Laboratory for Low Temperature Physics, Department of Physics and Astronomy, University of Massachusetts,

Amherst, Massachusetts 01003

(Received 13 January 1995)

We report measurements of spin-diffusion coefficients for 0.1 monolayer of ³He adsorbed on thin ⁴He films as a function of temperature and ⁴He coverage. For ⁴He coverages below a critical coverage D_c the ³He are immobile. The ³He quasiparticles in the film experience a mobility edge as the ⁴He coverage is increased beyond D_c . This is accompanied by a vanishing of local moments as evidenced by the disappearance of a Curie-like component of the magnetization for coverages $D > D_c$. A peak in the transverse relaxation T_2 occurs near D_c .

PACS numbers: 67.60.-g, 67.70.+n

In thin adsorbed films of ³He-⁴He mixtures, low coverage ³He is appropriately described at low temperatures (T < 200 mK) as a two-dimensional weakly interacting Fermi gas [1,2] occupying the lowest energy bound state at ⁴He film free surface. The energetics and thermodynamic properties of the bound states are sensitive to the structure of the liquid-vapor interface of the film [3,4] and exhibit [1,5-7] a dependence on the ⁴He areal coverage. Transport properties are similarly affected by the local ⁴He density and Fermi interactions [8,9]. Theoretical treatments [3,4] invoke translational invariance of the ³He environment and have been quite successful in predicting the ³He effective mass and the energies of the ³He states for ⁴He films thick enough to be fluid. In contrast, the effect of translational disorder on the behavior of the ³He impurities is not yet well known. Very thin ⁴He films are expected to be highly disordered through local variations in binding potential and solid-layer roughness, and so for these rather different thin films translational invariance breaks down. The effective mass and the density of states for the ³He impurities are sensitive to the potential structure, and hence spatial fluctuations in this potential may be expected to be a strong source of scattering. The ⁴He film with ³He impurities is analogous to two-dimensional electron systems, such as thin metallic films with quenched disorder, and to heterostructures, where theories for percolation and weak localization are well developed. Standard metalinsulator transition models consider quasiparticles moving in a randomly fluctuating perturbing potential [10,11]. The present work is an effort to explore this analogy by a study of the properties of neutral Fermi particles as a function of *in situ* variation of the potential caused by changing the ⁴He film thickness D_4 .

For the thinnest ⁴He films we imagine that the variations in an effective potential are sufficiently strong to localize the ³He atoms. Quasiparticles at the Fermi surface do not have sufficient energy to travel macroscopic distances, and hence no ³He diffusion is expected. As the ⁴He coverage is increased the potential evolves and at a critical ⁴He coverage D_c , percolation is expected. As the coverage is further increased the topography of the evolving potential surface determines the diffusion. Eventually the average quasiparticle energy exceeds all variations of the binding potential and the influence of the perturbing potential can be thought of as a weak source of scattering. The measurements we report here show the ³He diffusion to be a strong function of ⁴He coverage and validate this general picture.

Here we report measurements of the spin diffusion coefficient D of ³He in the quasi-two-dimensional ground state together with measurements of the spin susceptibility χ and the longitudinal and transverse relaxation rates $1/T_1$ and $1/T_2$, respectively, using pulsed NMR techniques [12] at 62.9 MHz. Our measurements are carried out on the polycarbonate substrate Nuclepore. 400 Nuclepore filters each perforated with 3×10^8 2000 Å diam holes/cm² provide a total surface area of 1.77 m² inside the $\sim 1 \text{ cm}^3$ NMR coil. The susceptibility and relaxation measurements are made by the use of Hahn spin echoes and the inversion recovery technique, while stimulated echoes and spin echoes in a static field gradient g, $0 \le g <$ 15 G/cm, are used to measure the diffusion. The primary advantage of using stimulated echoes is that the decay of the echo amplitudes is not limited by T_2 (as with Hahn echoes) but by T_1 , which can be quite long in this system ($1 \le T_1 \le 100$ sec). A submonolayer coverage of ³He, $n_3 = 1.08 \ \mu \text{moles}/\text{m}^2$ ($\approx 0.1 \ \text{monolayer}$), is adsorbed on a thin ⁴He film of varying thickness, $5.2 \ge D_4 \ge 2.1$ layers, on Nuclepore, where the ⁴He coverage is $n_4 \equiv 12.82 \ (\mu \text{moles}/\text{m}^2)/\text{layer} \times D_4$, with D_4 the thickness of the film expressed in terms of equivalent bulk-density layers.

During the course of a diffusion measurement, the ³He may travel macroscopic distances ($\sim \mu$ m), and so the large scale topography of the Nuclepore surface must be considered. A mean-field tortuosity factor α is defined by $D_m = D/\alpha$, where D_m is the measured diffusion coefficient with D the coefficient which would be present on a smooth surface. Third-sound velocity measurements can be used to determine α ; we find [13,14] $\alpha \approx 16$. During a diffusion measurement which utilizes stimulated echoes, a ³He atom visits many pores.

However, during the time span of a Hahn echo experiment $(T_2 \simeq 5 \text{ ms})$, many spins do not have sufficient time to leave pores, and hence a different effective tortuosity can be expected. Comparison of diffusion data obtained by the two techniques suggests that $\alpha_{\text{Hahn}} \sim 0.8\alpha$ is appropriate. We consider here the diffusion data derived primarily from the stimulated echo experiments.

In a constant field gradient g, a Hahn spin echo formed by a 90- τ -180 pulse sequence produces an echo of amplitude E at time 2τ , where $\ln(E) \propto -\gamma^2 g^2 \alpha t^{\kappa+2}$, while a pulsed field gradient spin echo or stimulated echo has an amplitude $\ln(E) \propto -\gamma^2 g^2 \delta^2 \Delta^{\kappa}$, where δ is the gradient pulse width, γ is the gyromagnetic ratio, $t = \tau$, and Δ is the gradient pulse separation or, for stimulated echoes formed by a 90- δ -90- Δ -90 pulse sequence in a constant field gradient, δ is the separation between the first and second rf pulses and Δ is the separation between the second and third pulses. κ is defined [15] by the time evolution of the mean-square displacement r in the external gradient $\langle r^2 \rangle \propto t^{\kappa}$. All of the diffusion data presented here are consistent with $\kappa = 1$, which implies that any anomalous diffusion is not due to percolated motion on a fractal network where $\kappa < 1$ might be expected.

For ⁴He coverages $D_4 > 2.66 = D_c$, degenerate susceptibilities are observed with degeneracy temperatures T_F^{**} in the range $100 \le T_F^{**} \le 300$ mK, and the temperature dependence [7] is that of an ideal Fermi gas using a degeneracy temperature T_F^{**} in place of the Fermi temperature T_F [where $T_F^{**} = T_F^*(1 + F_0^a)$], with the T_F^{**} determined by fits to the data at each coverage and where T_F^* is the Fermi temperature replacing the ³He mass by its effective mass m^* . However, for $0 \le D_4 < D_c$ the magnetization contains a Curie component to the lowest temperatures investigated, $T \ge 24$ mK (see Fig. 1),

$$M = \frac{C}{T_F^{**}} \left(1 - e^{-T_F^{**}/T}\right) + \frac{C_0}{T}.$$
 (1)

The Curie fraction $N_C/N = C_0/(C + C_0)$ is a function of the ⁴He coverage and is associated with spins which we believe to be localized in the solid layer [16]. For coverages $D_4 \sim 2$ layers these ³He account for ~10% of the total ³He coverage in the film [Fig. 2(a)].

The vanishing of the Curie fraction $N_C/N = C_0 = 0$ for $D_4 \ge D_c$ layers [see Fig. 2(a)] may be interpretated as the signal of liberation of localized ³He from the solidified second layer of the ⁴He film. Below this coverage, spin diffusion $D \sim 10^{-6}$ cm²/sec is measured, and long (~10-100 sec) T_1 relaxation times are seen, both consistent with ³He participating in a solidified second layer [Fig. 2(b)]. It is also apparent from the change in the temperature dependence of the T_1 data that there is a dramatic reduction in the spin-spin correlation τ_c time as we go from $\omega \tau_c \gg 1$ to $\omega \tau_c \ll 1$ as D_4 is increased beyond D_c layers. Note $T_1 \gg T_2$ [Figs. 2(b) and 2(c)], an observation [17] consistent with earlier measurements [18-20].

FIG. 1. Magnetization (normalized by the ideal twodimensional ideal Fermi-gas magnetization) as a function of inverse temperature T_F^{**}/T for three coverages of ⁴He: $D_4 = 2.050$ (open circles), 2.160 (open triangles), and 4.303 (open squares), with T_F^{**} values 126.7, 127.2, and 219.2 mK, respectively. A Curie component is present for $D_4 \leq D_c =$ 2.66 layers.

We notice that a sharp peak in T_2 is evident near $D_4 \approx 2.4$ layers, consistent with the presence of a "melting transition" among the ³He; i.e., as the ⁴He coverage is increased, the ³He become liberated [see Fig. 2(c)]. This may be interpreted as being due to a broad distribution of spin-spin correlation times in the "melted" ³He. This is consistent with a sudden broadening of the excitation spectrum responsible for relaxation. For larger ⁴He coverages the ³He is fluidlike; for lower coverages some ³He is apparently localized to the solid. This T_2 peak is at lower D_4 for higher temperatures.

For coverages $D_4 > D_c$ a marked increase in the ³He mobility is seen [Fig. 2(a)]. It is expected that at sufficiently low temperature scattering between quasiparticles at the Fermi surface will dominate spin diffusion. Miyake and Mullin [21] have shown that quasiparticle-quasiparticle scattering confined to a, two-dimensional Fermi surface exhibits a logarithmic temperature dependence in addition to T^2 . In the low-polarization, low-temperature limit, the predicted diffusion coefficient $D_{\rm FL}$ can be expressed in terms of experimental parameters χ , T_F^* , and F_0^a as

$$D_{\rm FL} = \left(\frac{\chi_0}{\chi}\right)^3 \left(\frac{T_F}{T}\right)^2 \frac{\pi \hbar/m}{|F_0^a|^2 \ln(T_F^*/T)} \,. \tag{2}$$

To facilitate comparison between this prediction and our diffusion data, we require χ/χ_0 and F_0^a values. In terms of the Fermi-liquid parameters F_1^s and F_0^a ,

$$\chi/\chi_0 = m_H \frac{(1+F_1^s/2)}{(1+F_0^a)}.$$
(3)

To determine the hydrodynamic mass [2] m_H and F_0^a from the χ/χ_0 data, we note that Bhattacharyya, DiPirro, and Gaspirini [1] have measured m^* , $m^* = m_H(1 + F_1^s/2)$, for a ³He coverage of 0.3 monolayer as a function of D_4 . Based on our present and earlier [2,5,6] work at five discrete ⁴He coverages, $D_4 = 3.1$, 3.5, 4.2, 5.2,

FIG. 2. (a) Diffusion coefficient D_m (triangles) and Curie fraction (circles) as a function of D_4 for T = 30 mK. The dashed curve is the Miyake-Mullin [21] prediction using our measurements of χ/χ_0 and deduced F_0^a values. (b) T_1 vs D_4 at 30 mK (closed triangles) and 250 mK (open triangles). (c) T_2 vs D_4 at 30 mK (closed triangles) and 250 mK (open triangles).

and 10.8 layers, the dependence of the magnetization on the ³He coverage is known. For $0.1 \le D_3 \le 0.6$, χ/χ_0 is linear in the ³He coverage [2,5] and, in general, extrapolation to zero coverage gives m_H . Since the slopes s of the measured χ/χ_0 vs D_3 vary smoothly over this range of D_4 , $1.15 \le s \le 1.21$ layer⁻¹, modest interpolation is possible. This interpolation coupled with extensive measurements of χ/χ_0 vs D_4 at $D_3 = 0.1$ layer allows extrapolation of χ/χ_0 to m_H . The ³He density dependence of the Fermi-liquid interactions removed by this process is at most a 2% effect. Figure 3(a) shows the hydrodynamic mass so determined between 2.5 and 7 layers of ⁴He from two different experimental runs, one with and one without 0.8 layer of O₂ preplated onto the Nuclepore. We point out that this hydrodynamic mass is in good agreement with the calculated trend with coverage which has been predicted [3,4]. Values of F_0^a [see Fig. 3(b)] are obtained as a function of D_4 by combining χ/χ_0 , m_H , and m^* . To determine these, we have assumed that F_1^s does not vary greatly with ⁴He coverage.

The use of χ/χ_0 measured at each ⁴He coverage and calculated values of F_0^a in the Miyake and Mullin

FIG. 3. The hydrodynamic mass (a) and F_0^a (b) as functions of D_4 . Different symbols in the case of m_H refer to different runs in which 0.8 monolayer of oxygen was (circles) or was not (triangles) present on the substrate.

[21] expression yields predicted values for the diffusion [Fig. 2(a)]. While the coverage dependence is similar to that of the measured diffusion (primarily due to the role of the hydrodynamic mass in both the susceptibility and the diffusion), the relative magnitudes differ by at least an order of magnitude. Furthermore, the temperature dependence of the measured diffusion is much weaker than $1/T^2$. We find the spin diffusion $D = \alpha D_m$, when scaled by the expected microscopic diffusion D_{FL} , follows a simple power law for temperatures $T \leq 100$ mK [see Fig. 4(a)]:

$$\frac{D(T, D_4)}{D_{\rm FL}} = \beta T^{\mu},\tag{4}$$

where for *all* coverages $\mu \approx 1$. Furthermore the coefficients β can be expressed as $\beta \propto (D_4 - D_c)^{\nu}$, where $\nu \approx 1$. Thus all of the low-temperature diffusion data follow $D(T, D_4) = \Delta(D_4 - D_c)TD_{\rm FL}$, where $\Delta = 0.29$ layers⁻¹ mK⁻¹ [Fig. 4(b)].

This universal scaling may be an indication of percolation. There are three types of disorder to consider. The first is tight binding on the atomic length scale where some fraction of the ³He may be localized and perhaps enter the underlying ⁴He solid layer. The second is large fluctuations which occur on a much longer length scale and are of sufficient magnitude that in some local regions available states are of higher energy than the ³He chemical potential and so are unoccupied. In this case the surface coverage varies and mobility depends on the topography of the excluded regions and a percolation model is appropriate.

FIG. 4. (a) D/D_{FL} vs *T* for several coverages: 2.693 (solid diamonds), 2.893 (open triangles), 3.212 (open diamonds), 3.506 (closed circles), and 4.202 (open circles). (b) $D(T)/TD_{FL}$ vs $D_4 - D_c$ to illustrate the scaling behavior $D(T, D_4) = \Delta(D_4 - D_c)TD_{FL}$.

Isichenko has noted [11] that when there are fluctuations in which there are no excluded regions but where the two point correlations are comparable to k_F the quasiparticles can be strongly scattered. If at low temperatures the inelastic lifetime is sufficiently long, then weak localization can result [11].

In conclusion, we have reported measurements of the dynamics of the two-dimensional ³He in the environment of a thin ⁴He film in a context where the fundamental behavior of the substrate can be varied from one of strong to one of weak scattering. A mobility edge is apparent as a function of the ⁴He coverage. The measured diffusion demonstrates scaling behavior for cases of weak scattering.

We thank P. Sheldon for assistance with the data collection and J. Treiner and E. Krotscheck for helpful comments. This work benefited from a NATO grant for travel and was supported by the National Science Foundation through Grants No. DMR 91-22348 and No. DMR 94-22208 and by Research Trust Funds administered by the university. R. B. H. gratefully acknowledges the support of a J. S. Guggenheim Fellowship.

[†]Present address: Institut des Biomateriaux, Hopital St.

Francois, Quebec City, Canada.

- B.K. Bhattacharyya, M.J. DiPirro, and F.M. Gaspirini, Phys. Rev. B **30**, 5029 (1984).
- [2] J.M. Valles, Jr., R.H. Higley, B.R. Johnson, and R.B. Hallock, Phys. Rev. Lett. 60, 428 (1988).
- [3] E. Krotscheck, M. Saarela, and J. L. Epstein, Phys. Rev. B 38, 111 (1988).
- [4] N. Pavloff and J. Treiner, J. Low Temp. Phys. 83, 331 (1991).
- [5] R. H. Higley, D. T. Sprague, and R. B. Hallock, Phys. Rev. Lett. 63, 2570 (1989).
- [6] N. Alikacam, D. T. Sprague, and R. B. Hallock, Phys. Rev. Lett. 67, 2501 (1991).
- [7] D.T. Sprague, N. Alikacem, P.A. Sheldon, and R.B. Hallock, Phys. Rev. Lett. **72**, 387 (1994).
- [8] D. T. Sprague, N. Alikacem, P.A. Sheldon, and R.B. Hallock, J. Low Temp. Phys. 89, 605 (1992).
- [9] D.T. Sprague, N. Alikacem, P.A. Sheldon, and R.B. Hallock, Physica (Amsterdam) **194–196B**, 631 (1994).
- [10] J. M. Ziman, *Models of Disorder* (Cambridge University Press, Cambridge, 1979).
- [11] M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).
- [12] A. Abragam, *The Principles of Nuclear Magnetism* (Oxford University Press, Oxford, 1961).
- [13] J. M. Valles, Jr., Ph.D. dissertation, University of Massachusetts, 1988 (unpublished).
- [14] J. M. Valles, Jr., D. T. Smith, and R. B. Hallock, Phys. Rev. Lett. 54, 1528 (1985); D. T. Smith, K. M. Godshalk, and R. B. Hallock, Phys. Rev. B 36, 202 (1987); S. Cohen, R. A. Guyer, and J. Machta, Phys. Rev. B 33, 4664 (1986).
- [15] Jörg Kärger, Harry Pfeifer, and Günter Vojta, Phys. Rev. A 37, 4514 (1988).
- [16] R.N. Blatt and D.S. Fisher, Phys. Rev. Lett. **68**, 3072 (1992); see also D. Belitz and T.R. Kirkpatrick, Phys. Rev. Lett. **63**, 1296 (1989); Bhatt and Fisher have shown that for an Anderson-Hubbard model with positional disorder on a continuum anomalous divergent susceptibility occurs. The spin diffusion $D_s \sim D\chi_0/\chi(T)$ is therefore expected to vanish at sufficiently low temperatures. These theoretical expectations are consistent with our low- D_4 magnetization and diffusion data.
- [17] A most likely explanation for this behavior is the presence of multiple spin-spin correlations in this system.
- [18] D.T. Sprague, N. Alikacem, and R.B. Hallock, Phys. Rev. B 44, 9776 (1991).
- [19] C.P. Lusher, B.P. Cowan, and J. Saunders, Phys. Rev. Lett. 67, 2497 (1991).
- [20] D.R. Swanson, D. Candela, and D.O. Edwards, J. Low Temp. Phys. 72, 213 (1988).
- [21] K. Miyake and W. J. Mullin, J. Low Temp. Phys. 56, 499 (1984).

^{*}Present address: Department of Physics, Northwestern University, Evanston, IL 60208.