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First Order Rigidity Transition in Random Rod Networks
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We study the transition from the flexible to the rigid state in a system of randomly placed rigid
rods connected by free joints. At the percolation transition point the system is still flexible and the
transition to the macroscopically rigid state occurs at a higher concentration of bonds. It is shown that,
in contrast to the percolation transition, the rigidity transition is analogous to the first order transition
in thermodynamical systems: the rigidity correlation length is finite at the transition point, there is a
finite jump in the magnitude of the order parameter, there are similarities with the new phase nucleation
processes, etc.

PACS numbers: 64.60.Ak, 05.20.—y, 05.70.Fh

The problem of the elastic properties of randomly
diluted networks with central force interactions attracts
considerable attention not only due to its wide range of
applicability, but also because of remarkable inconsis-
tencies in the results obtained by different numerical
methods. The most extensively studied model is the
two-dimensional randomly diluted hexagonal lattice
model. For this model even the value of the critical
threshold concentration of rigid bonds obtained using
series expansions [1,2], transfer matrices [3,4], and
finite-size scaling [5—10] is under question. The dis-
agreement between various estimates [1—10] exceeds the
accuracy of the methods used. There are also substantial
disagreements about the values of critical exponents.

The numerical data in these studies were analyzed
using a scaling approach, under the assumption that
the rigidity transition is a second order type transition.
Indeed, there is a similarity between the percolation and

rigidity transitions. Randomly connected bonds can form
elementary rigid clusters: in 2D it will be triangles made
from three bonds, in 3D it will be tetrahedra made from
four bonds. If two such clusters have a common bond,
they also form a rigid construction. The concentration of
elementary rigid clusters will monotonically increase with
the concentration of bonds. So the size of rigid regions r,
will also monotonically increase.

If we assume for a moment that the analogy between
percolation and the rigidity transition is valid, then the
size of rigid regions r, should diverge while approaching
some critical concentration p„g. Above p„g there will
be a connected rigid structure which interpenetrates the
whole system —the infinite rigid cluster. The order
parameter, i.e., the density of bonds contributing to
the infinite cluster, is zero at p„g and should grow
continuously with increasing bond concentration.

We shall show below that the transition to a macroscop-
ically rigid state looks absolutely different and is similar to
a first order transition in thermodynamic systems. There
is a finite jump in the magnitude of the order parameter
at the transition point. The number of bonds participating
in the macroscopic rigidity just above the transition point

p ~ p„g + 0 is of the order of the total number of bonds in
the system. The characteristic length of the isolated rigid
clusters remains finite near the transition point. There are
phenomena analogous to supercooling and superheating,
formation of a critical droplet, and so on. It is remark-
able that the massive infinite rigid cluster is mechanically
a rather fragile object because its rigidity is controlled by
the few bonds which caused the transition. We shall argue
that its macroscopic rigidity is proportional to (p —p„g)3t2

in the vicinity of the transition.
The main reason the analogy with percolation theory

cannot be applied directly for the propagation of the rigid-
ity is the following. Percolation describes the propagation
of a "scalar" quantity; each site of the lattice either be-
longs to the infinite cluster or not. The rigidity is a more
complex notion: In d-dimensional space each element of
the rigid structure cannot be moved in any d directions
with respect to the remaining structure. In addition, it can-
not be rotated along d(d —1)/2 independent axes. This
means that there are d(d + 1)/2 independent restrictions
on the possible motion of each element of the rigid struc-
ture. Each of these restrictions can be applied in its own
geometric way. We can think about the propagation of
rigidity as a "vector percolation" problem. This nontriv-
ial character of propagation of rigidity can be illustrated

by the simplest two-dimensional example shown in Fig. 1.
It is a system of rigid clusters connected by free joints.
Each cluster has three independent degrees of freedom: two
translational and one rotational. Each connection with a
free joint eliminates two degrees of freedom. The clusters
A' and B' are part of the infinite rigid structure. Clusters
which are connected to them only with a free joint can still
have one degree of freedom. Clusters C and D, which are
connected with clusters A' and B' and among themselves,
are also part of the infinite rigid structure. The clusters
next to them, A and B, which are connected with clusters
C and D with joints and with each other, also become part
of the infinite structure, and so on. The melting transi-
tion for this construction is very sharp: If we remove any
rigid bond from the picture, all clusters to the left of this
bond will fall apart from the infinite rigid structure. The

4472 0031-9007/95/74(21)/4472(4)$06. 00 1995 The American Physical Society



VOLUME 74, NUMBER 22 PHYSICAL REVIEW LETTERS 29 MAY 1995

A'

S'

FIG. 1. If clusters A' and B' are part of the infinite rigid
structure, clusters A, B, C, and D form a rigid construction
too. The melting transition is very sharp: If we remove any
rigid bond, the correlation length (to the left of this bond) will
be reduced to the size of a single cluster.

correlation length of the rigidity will be reduced to the size
of a single cluster. If we give up the initial assumption
that clusters A' and B' are connected with the infinite rigid
cluster, and assume that they are connected just with some
other clusters, it is impossible to decide if the subsystem of
clusters A', B', C, D, A, B is rigid or Aoppy. Clearly, both of
these states are possible. In traditional percolation theory
the situation is absolutely different: Looking at any partic-
ular realization of random clusters we can always decide if
the whole system is percolating or not. The only require-
ment in this case is that the size of the observation region
should be larger than the percolation correlation length.

For the description of the transition we shall first de-

velop a mean field theory. For simplicity we shall discuss
it in terms of a two-dimensional model: The elementary
rigid object will be a triangle. The generalization to the
three-dimensional case is straightforward, and the role of
fIuctuations will be discussed later.

Our method will be similar to the use of an exter-
nal field in thermodynamic systems, or to the introduc-
tion of the "ghost" atom in percolation theory [11]. We
assume that under our two-dimensional system of ran-

domly placed bonds there is a rigid underlying surface,
and that a small fraction of bonds h (h bonds) have a rigid
connection with this surface. We can define the rigidity
correlation function G(rt —r2) or G(k) = f G(r)e'"'d2r
in the momentum representation. This function will de-
scribe the connectivity of bonds in clusters of rigid tri-

angles. In the initial (mean field) approximation this

function can be written in the form G(k) = 1/(r + k ),
where ~ —p* —p and p* is the density of bonds at
which there is a percolation transition over the connected
triangles. Note that G(k = 0) = r ' is the average num-

ber of bonds in rigid clusters. If any bond of the rigid
cluster is connected with the underlying substrate, so is
the entire cluster. To the first approximation the density
P of bonds which belong to the infinite rigid structure is
P = G(k = 0)h = h/r T. his equation overestimates P,
because if one rigid cluster contains two or three h bonds
which are connected with the underlying substrate, then

this cluster gives a double or a triple contribution to P.
Proper corrections can be represented by the second and
third terms in the right hand side (rhs) of Fig. 2(a). The
next order corrections are also shown in Fig. 2(a) in the
first row. These diagrams are the same as in percolation
theory [11].

Besides these terms, there are contributions to P shown
in the second row of Fig. 2(a) which are absent in

percolation. They represent additional contributions to P
from configurations in which the cluster is connected to
two or more other clusters containing h bonds through
free joints.

For example, the diagram in the second row of Fig. 2(a)
describes the contribution from configurations where the

given cluster is connected to two others through free
joints. These two other clusters already belong to the
infinite rigid structure, because each of them contains h

bonds. The corresponding contribution to P from this dia-

gram is (1/r) g3(t/r)2h2, where gs is the statistical weight
of configurations containing a triple vertex. We should
note that all these extra diagrams describe additional rigid
configurations and contribute with a "plus" sign, in con-
trast to the oscillating sign behavior of regular percolation
diagrams.

Resummation of the diagrams in the rhs of Fig. 2(a)
gives us the graphic equation, Fig. 2(b). The higher order
terms in P are not shown here. If the external field h is
a function of space coordinates h = h(r), then the order
parameter also becomes coordinate dependent: P ~ P(r)
The graphic equation of state, Fig. 2(b), can be written in

a coordinate dependent form

P(r) =
2

G(r —r')h(r')dr' —
g3 G(r —r')P(r')P(r')dr' + g3

7

X G(r —r')G(r' —r")G(r" —r"')P(r")P(r"')dr'dr"dr'" + W((P(r;)]), (1)

where W((P(r;)]) describes the contribution of the higher
order terms. Expanding P(r') = P(r + (r' —r)) in pow-
ers of r' —r,

P(r + a) = [1 + (aV) + z(a7)2 + ]P(r), (2)
we obtain finally t'2
(r + 'V )P(r) = h(r) —g3P (r) + g3

— P (r)

+ aP(r)'7 P(r) + W(P(r), '7P(r)) +

In the limit of a large system and far from the boundaries,
P(r) = const and Eq. (3) can be simplified as follows:

2

rP = h —g3P + g3
— P + W(P) . (4)
7"

This equation is similar to the mean field equation of
state for the order parameter in percolation theory. The
only difference is that Eq. (4) has an additional term
g3(t/r)2P2 which diverges at small r, and the sum of the
two terms in Eq. (4) containing P can change its sign. In
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FIG. 2. (a) Diagrammatic expansion for the density of the
infinite rigid structure P, denoted by symbol X, each symbol

~

represents h bonds and contributes a factor h, each open circle
gives an additional factor t, proportional to the density of free
joints in the system, each line gives a factor ~ ', triple vertex
factor g3.
percolation we have a second order phase transition, but
now, when the sign of the leading nonlinearity is changed,
we can expect a first order transition.

The solution to this equation can be found graphically
[see Figs. 3(a)—3(d)]. Here the straight line is the left hand
side of Eq. (4), and the curve is given by the rhs of this
equation. At small P the shape of the curve is determined
by the first three terms in the rhs of Eq. (4); at large P the
high order terms become important. At large P the curve
representing the rhs of Eq. (4) is going down [12].

At small h and 7 & t the order parameter is propor-
tional to the external field: P = h/r [see Fig. 3(a)]. As
h 0 the order parameter goes to zero. At 7- & t the
sum of the two terms with P in Eq. (4) becomes negative
and there appears a bump on the curved line [Fig. 3(b)].
This bump will grow when 7- 0, and at the same time
the straight line 7-P will go down. Below some critical
value ~ & ~' a straight line should cross this bump. This
means that two additional solutions of Eq. (4) appear [see
Fig. 3(c)]. One of them, shown by the heavy dot, is stable
and the magnitude of the order parameter P given by this
solution is finite even at zero field h = 0. At 7- & 0 we
have only one solution [Fig. 3(d)].

This situation is exactly the same as for the first order
phase transition in thermodynamic systems. The only dif-

(a) (c)

Po
Po
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FIG. 3. Graphical solution of Eq. (4) for the density of the
infinite rigid cluster Pp', (a), (b) one solution; the density goes
to zero if h ~ 0; (c) there are three solutions, two of them
stable; (d) one solution.

ference is that we obtained Eqs. (3) and (4) directly by dia-
grammatic expansion, while for traditional thermodynamic
systems a similar equation of state can be obtained through
the minimization of a free energy functional. Unfortu-
nately, reconstruction of the "free energy" for our problem
is not possible because of the terms in Eq. (3) which can-
not be directly integrated, i.e., P'72P.

Two different solutions in the region ~"' & r & 0 corre-
spond to the completely fiexible system (P = 0 at h = 0)
and to a system in which a finite fraction P = Po of bonds
form a rigid skeleton. In traditional thermodynamics the
selection of one of the solutions is straightforward: The
phase with the lowest free energy should be dominant
in large systems. In our case this is impossible because
the free energy does not exist. The only regular way to
select one of the two possible states of a large system
is by finding the stable solution of the integral equation
Eq. (1), or its simplified version Eq. (3). We can choose
free boundary conditions on the right boundary (for exam-
ple), rigid boundary conditions on the left boundary, and
periodic boundary conditions in other directions. The so-
lution should include a rigid region starting from the left
boundary, a flexible region starting from the right, and the
domain wall between these two regions. In a large sys-
tem the domain wall will be close either to the right or
to the left boundary. This will indicate which state, rigid
or flexible, dominates in the thermodynamic limit. If all
boundaries are of the same type, all rigid or all free, a phe-
nomenon analogous to superheating (supercooling) can be
obtained. The phase induced by the boundary can prevail
in the bulk, if large enough droplets of another phase are
not present. Such droplets can be formed due to fluctua-
tion of local density of rigid bonds, and the probability of
such fluctuation can be exponentially small.

Similar considerations can be carried out for the three-
dimensional case. The total number of degrees of freedom
of a rigid object in 3D is six and each junction eliminates
three of them. We can write the same diagrams as for the
2D problem and equations similar to Eqs. (2)—(4) [13].

All of the above results were obtained in the mean
field approximation. It is useful to check how these
results will be affected by fluctuations. The simplest
one-loop diagrams contributing to the correlation function
G(rt —r2) and to the triple interaction vertex g3 are
shown in Fig. 4.

The diagrams (a) and (c) are the same as in percolation
theory. Their signs are negative. Diagrams (b) and (d) are
specific for the rigidity problem. These diagrams are more
divergent than the percolation diagrams when ~ is small.
They produce a positive contribution to the renormalized
correlation function and to the triple vertex. The situation
is the same with other leading higher order corrections.
All this indicates a first order instability in a system with
a finite correlation length when t = r. Qualitatively, they
are the same criteria as for the mean field transition.

So far only the geometrical aspect of the rigidity
transition was considered. The rigidity order parameter
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p = (p —p, ) (in both 2D and 3D). Combining the
above two dependences, we can get the finite size scal-
ing formula for the elastic modulus:

p = (p —p,.) F((p —p, )L'),

(b) (c)
FIG. 5. The Aoppy two-dimensional structure becomes com-
pletely rigid after addition of a few bonds.

(d)

FIG. 4. One-loop corrections to the correlation function
G(r~ —r2) and to the triple vertex g3.

P is the analog of the order parameter in percolation
theory. It indicates the fraction of bonds participating in

the infinite rigid cluster. But it does not provide insight
into the stress distribution in the random rigid network,
nor does it give the value of the macroscopic rigidity
moduli. The rigidity transition is first order, so that the
addition of a few bonds can "solidify" the whole system.
This means that a small number of bonds carry all stress
applied to the system. If each bond has a finite rigidity,
the macroscopic rigidity moduli appear to be small (zero
in the thermodynamic limit).

We know already that in the vicinity of the transition
the size of rigid clusters is finite. If this transition is
characterized by a single correlation length, the critical
exponent characterizing the growth of the macroscopic
elastic moduli can be trivial and should not depend on the
details of the model on smaller scales. We calculated this

exponent using a simplified model of an elastic network,
similar to that introduced recently by Rubinstein, Leibler,
and Bastide [14] to describe Iluctuations in a gel. The
2D version of this model is just a tetrafunctional network
of freely joined rigid rods [see Fig. 5(a)]. This network
is flexible and can be folded along every row or along
every column of plaquets [Fig. 5(b)], but the addition of a
few more constraints makes it rigid. In Fig. 5(c) the same
network is shown with a few new bonds added. Each new
bond (diagonal in the elementary plaquet) eliminates the
flexibility along the corresponding vertical and horizontal
rows of plaquets. In the large L X L system containing
L bonds it is sufficient to add randomly of order L new
bonds in order to make the system completely rigid. In
the thermodynamic limit the fraction of these new bonds
6p = I /L goes to zero. Thus a transition from the ]loppy
to the rigid state in this system is first order.

A straightforward calculation shows that the macro-
scopic elastic modulus in a large system grows as a

with f = 2, t = I, and F(x) some universal function.
This is in remarkable agreement with experimental values

f = 1.4 and v = 1.0 obtained by Lemieux, Breton, and

Trembley [3] for the elasticity of random 2D networks.
In conclusion, we have shown that the rigidity transi-

tion in a rigid rod network is a first order transition. The
correlation length is finite at the transition point, there
are phenomena similar to nucleation, etc. The density
of bonds which belong to the infinite rigid cluster has a
finite jump at the transition point. Nevertheless, the in-

finite rigid cluster is very fragile mechanically near the
transition point, and the elasticity modulus is a continuous
function of bond concentration p, = (p —p, )t, f = 3/2.
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