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Dynamic Scaling in an Aggregating 2D Lennard-Jones System
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The evolution of a 2D Lennard-Jones system, quenched from the fluid to below the triple point,
is simulated by molecular dynamics. We show that the structure factor obeys the scaling relation
S(q/q (t)) —q (t) "IS(q/q ) Here q . is the location of the low angle peak in S(q), d&

——1.85 ~ 0.05
is a fractal dimension, and S(q/q ) is a time-independent characteristic function which peaks at q . The
quenching process is thermodynamically similar to the formation of a gel from a sol. Hence the relation
suggests that a characteristic fractal dimension of even a dense gel can be derived from measurements
of the time evolution of S(q).

PACS numbers: 61.43.Bn, 61.43.Hv, 64.60.Ak

This Letter reports a simulated quench of a fluid to
a temperature below the triple point. Specifically, we
describe a molecular dynamics [1,2] simulation of the
evolution of a 14336-particle two-dimensional Lennard-
Jones system when quenched from a liquid state reduced
temperature T = 1.0 to T = 0.2. The triple point for
this system is approximately Ttp 0 ~ 41. The system
was allowed to evolve at a density p = 0.325 for a total
reduced time of t = 1000, with an integration time step
At = 0.004, and at a constant temperature maintained by
a Gaussian isokinetic thermostat [1].

The behavior of the system is of interest since quench-
ing to the solid has not been simulated before. Moreover,
the change in morphology with time, mirroring the de-
composition of the system from the spinodal region to a
quasisolid, is of wider interest. We have argued [3] that
quenching is thermodynamically similar to the formation
of a gel from a sol. In fact, recent experiments on the
structure of dense silica gels prompted this work [3,4].
The experiments indicated that a power-law form of the
structure factor S(q), where q is the scattering wave vec-
tor, does not necessarily reflect fractal aggregation when
the sol is dense [5]. From simulations, however, we may
unambiguously evaluate the structure factor. We will
show that the evolution of S(q) in this quenched Lennard-
Jones system obeys a dynamic scaling relation from which
a characteristic fractal dimension of the decomposing quid
can be derived regardless of—the density. We thus ar-

gue that the simulation provides invaluable insight into
the interpretation of experiments designed to probe the
gel mechanism.

The simulation results are presented in Fig. 1 for repre-
sentative times. Shown are four snapshots taken at post-
quench times t = 8, 40, 200, and 1000. At t = 8, the
system, which was in an initial, disordered state at T =
1.0 before the quench, has formed two distinct phases:
a solid (black regions formed of dense particle clusters)

and an extremely dilute gas (white regions essentially de-
void of particles). The microstructure is characterized
by finely dispersed clusters of particles that form thick
filaments and is reminiscent of the structures observed
in simulations of spinodal decomposition in liquids [6,7]
and solids [8]. Figure 2 shows the corresponding compu-
tations of S(q, t) (azimuthally averaged as the computed
diffraction patterns displayed circular symmetry). A peak
in S(q) at low angles results from correlations in the po-
sitions of neighboring clusters, and its location provides a
rough measure of the average cluster-cluster separation at
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FIG. l. Evolution of the MD simulation after a quench from
T = 1.0 to T = 0.2. The simulation contains 14336 particles
at a density p = 0.325. (a) t = 8, (b) t = 40, (c) t = 200, and
(d) t = 1000.
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FIG. 2. The structure factor S(q, t) computed from the four
simulations presented in Fig. 1. Note, as the simulation
evolves, the peak maximum at low q increases and moves
towards smaller q.

FIG. 3. The structure factor S(q, t) for various times in the
simulation since the temperature quench, scaled according to
Eq. (3). The solid line is the phenomenological theory of
Furukawa [11],which has no adjustable parameters.

a given time. As the simulation evolves, this peak moves
to lower q and grows in height. The shift to lower q in-
dicates increasing cluster-cluster separation; the height is
related both to the degree of correlation between clusters
and to the number of particles contained in an average
cluster.

Inspection of the morphologies shown in Fig. 1 hints
that the decomposition proceeds in a temporally self-
similar manner. We, therefore, assume a form for the
structure function that, except for the location and height
of the peak maximum, is invariant during the coarsening
process:

S(q/q (t)) = K(q (t)) S(q/q ),
where q (t) is the location of the peak maximum, S(q/q )
is a characteristic structure function with a maximum at

q, and K(q (t)) is a proportionality constant.
The form of IC(q (t)) can be obtained as follows. The

magnitude of the structure factor is proportional to the
number of clusters N, and the square of the number of
particles per cluster n2.

S(q/q (t)) —N, n S(q/q ) . (2)
df df

We note that n ~ I.& ~ qm, where L, is a characteristic
linear dimension of the clusters, and, in general, df is a
fractal dimension. Mass conservation requires N, n = N p,
the total number of particles in the system. The scaling
relation can thus be written as

S(q/q-(r)) —q (r) "'S(q/q ) (3)

Equation (3) is, therefore, a more general form of the
scaling relation normally given in the literature [9—11],
where df has replaced D, the dimensionality of the
system. Figure 3 is a plot of the scaled structure factor
against q/q at times t = 40 to t = 700 after quench
initiation, using an exponent df = 1.85 in Eq. (3). All

data fall essentially on a single curve. The hypothesis
of temporal self-similarity thus appears justified. (Results
corresponding to t = 8, and those after t = 700, are not
included in the figure. For early times cluster growth
does not follow a coarsening mechanism [6]. At later
times the clusters reach a size which spans more than 2

the simulation box length [see, e.g. , Fig. 1(d)]).
Note that the exponent is not the Euclidean dimension

D = 2. We verified that df 4 D by constructing a plot

of qm S(q ) vs q for d~ = 2, 1.85, 1.7. If scaling holds
and the fractal dimension is chosen properly, then this
plot must give a horizontal line, otherwise there will be
systematic deviations from the horizontal. Figure 4 is the
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FIG. 4. The small angle peak maximum scaled according to
Eq. (3) for various fractal dimensions df. Note that when a
fractal dimension of 2 or 1.7 is assumed there is a systematic
deviation away from the horizontal, indicating that these fractal
dimensions will not give an accurate fit to the assumed
scaling law.
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result. For df = 2 there is a clear systematic increase with

q, for df = 1.7 there is a systematic decrease, but for
df = 1.85 the curve is close to horizontal. Hence, Fig. 4
demonstrates that the exponent is indeed less than D = 2,
and, by our estimation, is accurate to within ~0.05.

As a matter of interest, Furukawa's phenomenological
form [11]

(1 + 7/2) (qlq. )'
(q/q ) —

/2 ( / )„, (4)

for the characteristic structure function is plotted in Fig. 3,
using y = 3 to ensure that Porod's law is obeyed at high
q. Agreement between our simulation data and Eq. (4) is
impressive especially because the only variables required
to construct Fig. 3 are the locations q for each snapshot
(determined using a least-squares fitting procedure), the
fractal dimension df, and a single, universal, normalizing
constant to place the peak height at 1. Alternatives for
the characteristic structure function can be considered,
for example, Schatzel and Ackerson's equation [12] was
shown to work well in colloidal systems. Here, however,
the particular form of Eq. (4) is not central to our
arguments.

Scaling using a form of Eq. (3) with df = D is well
known [6,10], but simulation results in which df 4
D have apparently not been observed before. Here,
however, we simulated decomposition into the solid, and
this mechanism might be slightly different from previous
studies that investigate decomposition into the liquid and
which used D in the scaling. Also, here, the system
contained 14336 particles. In a smaller system [6,10],
it is difficult to detect a small difference between D
and df . For example, the simulations were repeated
with 3584 particles, and it was impossible to distinguish
scaling with the exponent df = 1.85 from df = D = 2.
A large system was needed to confirm details of the fractal
scaling because (a) it allows us to investigate a sufficiently
wide range of times and scattering vectors, and (b) S(q)
can then be calculated to sufficient precision.

Finally, we connect the simulation results with exper-
imental diffraction studies of aggregation and gelation in
general and of gelation of silica spheres in particular [4,5].
Most gelation diffraction experiments have concentrated
on dilute samples (volume fraction (1% of a precursor)
where the structure factor displays a well-known power-
law rise with decreasing wave vector [13]. This power-
law growth has been demonstrated convincingly to result
from fractal aggregation [14—16]. Recent experiments [4]
with dense systems of colloidal silica (volume fraction
)10%) also suggested a power-law behavior of S(q). It
is, however, not necessarily valid to interpret a power-
law slope in terms of a characteristic fractal dimension
because the slope may have a contribution from cluster-
cluster correlations [5,17]. Our simulations here of dense
systems, for example, show a power-law rise in S(q) with
decreasing wave vector over a significant range of q (see

Fig. 2 in the region 0.05 ( qtr/27r ~ 0.5). This rise,
however, is from a peak in S(q) which we know origi-
nates from cluster-cluster correlations. It cannot be inter-
preted in terms of a fractal dimension. In fact, the slope
in Fig. 2 is near 3 clearly nonsensical if interpreted in
the normal way. It would seem, therefore, that it is not
possible to derive a fractal dimension from scattering data
on dense systems. This is true for a single measurement
of S(q), but the results of this paper indicate that if gela-
tion at high density produces temporally self-similar struc-
tures, then measurements of the evolution of S(q) could be
used to derive a fractal aggregation dimension in the same
way Fig. 3 was constructed.

Experimental evidence has indeed already demon-
strated that an analysis of the time evolution of S(q)
can be fruitful. In their light-scattering experiments of
aggregating polystyrene spheres, Carpineti and Giglio
[18] estimated a dimension df = 1.9 from the stan-
dard power-law slope analysis, justified in their case
because their system was sufficiently dilute. They
then showed that this fractal dimension, when inserted
into Eq. (3), scaled the time dependence of their S(q).
Equations (1)—(3) justify why a fractal dimension in the
exponent is appropriate in their experiment rather than
using D = 3. Moreover, our results demonstrate that it
would be equally valid to determine a fractal dimension
from the scaling relation itself. Furthermore, the scaling
law analysis will work in all systems regardless of the
density The res.ult of this paper may, therefore, indicate
an important new way of unambiguously interpreting data
taken from dense aggregating systems.
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