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Small-Angle Neutron Scattering Investigation of Topological Constraints
and Tube Deformation in Networks
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The effect of topological constraints on the microscopic deformation of network chains in a
statistically cross-linked rubber under uniaxial deformation is addressed by small-angle neutron
scattering (SANS) on labeled paths in a network. The observed SANS patterns exhibit a pronounced
transition from elliptical to lozengic shapes. Within a tube approach for the constraining potential the
scattering function is calculated in the 2D detector plane. Excellent agreement between the statistical
mechanical model and the experimental results is obtained.

PACS numbers: 61.41.+e, 61.12.Ex, 83.80.Dr

The microscopic structure and dynamics of entangled
polymer melts and networks have been a focus of atten-
tion ever since the creation of the reptation model [1,2] in
the early seventies. Being a very elegant mean-field de-
scription this model treats the entanglements of mutually
interpenetrating polymer chains by the assumption of a
confinement of chain segments inside a soft tube along the
chain's profile. The existence of the tube is now well ac-
cepted, and direct observations of the corresponding length
scale do have been reported examining the dynamics of
melts by neutron-spin-echo methods [3,4]. Topological
interactions giving rise to the tube constraints in the melt
have also a decisive importance for the chain conforma-
tions that may be achieved in networks. Intuitively it may
be assumed that the constraints deform affinely with the
macroscopic deformation A [5—7]. This assumption leads
to the famous Mooney-Rivlin equation for the stress-strain
relations in rubbers. Later Heinrich and Straube [8,9] ap-
proximated the tube constraints within a self-consistent
mean-field approach by a harmonic potential and deter-
mined the strength and the deformation behavior of the
confining potential ~ Their approach predicts for a de-
formed network with main axis deformation ratios A„a
pronounced nonaffine deformation of the equilibrium tube
diameter do as

d dpA (I)
with v = 2. Mechanical investigations are in agreement
with the exponent v =

z but are too insensitive to dis-
cern between an affine behavior v = l and the theoreti-
cal prediction [10,11]. Small-angle neutron scattering
(SANS) is the proper technique to test the assumptions of
the model independently and to provide a profound experi-
mental background for the parameters of the model. In this

work we present 2D SANS data on labeled chains cross-
linked within a network for different degrees of strain. De-
pending on strain the 2D patterns exhibit a significant tran-
sition from the expected ellipsoidal to a lozengic shape.
On the basis of the mean-field tube model we calculated
the 2D scattering function as a function of strain. Only for
a nonaffine constraint deformation with v =

2 the theoret-
ical isointensity contour lines exhibit the same ellipsoidal-
lozengic transition. Furthermore, the magnitude of the
determined equilibrium tube diameter do agrees well with
results from neutron-spin-echo experiments [3,4].

The ellipsoid-lozenge transition was considered in lit-
erature only scarcely until now and a clear picture could
not be presented. Systematic studies of network forma-
tion in relation to the appearance of lozenges in melts and
rubbers were performed by Bouc et al. [12] and Zielin-
ski [13]. The weaker anisotropy in the parallel direction,
however, could not be explained in terms of a rubber elas-
tic theory, and a link rather than the butterfly patterns was
proposed. des Cloizeaux [14] treated entanglements as
fixed, affinely deforming stress points and chain segments
as Brownian. He obtained a tendency to lozengic pat-
terns, but the lozengic shape is very weak and no fit of
experimental data was reported.

The experiments were carried out on partially la-
beled polyisoprene (PI) networks. The polymers were
prepared by anionic polymerization of the protonated
and deuterated (99%) monomers in hexane by standard
high-vacuum techniques at ambient temperature. Molecu-
lar weights M and weight distributions were measured
independently by low angle laser light scattering and
size exclusion chromatography. Networks were prepared
by mixing appropriate amounts of d-PI (10%, M„=
207000 g/mol, M /M„= 1.015) and h-PI (90%,
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M = 131000 g/mol, M /M„= 1.015) and a stoichio-
metric amount of the cross-linker, Dicumylperoxide in
Tetrahydrofuran. The solvent was evaporated under
vacuum. Cross-linking proceeded in bulk at 165 'C
for 4 h. Stress-strain plots were recorded with strain
velocity about 9.8 X 10 s '. A network chain mass
of M, = 9200 ~ 500 g/mol between cross-links was
obtained in agreement with swelling data in cyclohexane
(M, = 9700 g/mol). The soluble part was extracted in
the same solvent and the gel fraction was determined from
the dry-weight difference of the rubber before and after
the extraction procedure. The corresponding gel fraction
was Ps, ~

= 0.97 ~ 0.02.
SANS data were recorded using the NG-7 SANS

instrument at the National Institute of Standards and
Technology, Gaithersburg, with a neutron wavelength of
A~ = 6.0 A. with wavelength spread ca. 9% and converted
to absolute scale by means of a calibrated silica standard.
The measurement range was 0.003 to 0.09 A ' in terms
of the scattering vector Q = (4~/A~) sin(0/2) with 0
the scattering angle. The incoherent background was
measured separately from a fully unlabeled network of
comparable cross-link density and subtracted. Macro-
scopic strains were determined within 5% accuracy from
a grid of marks on the sample. The experimental length-
to-width ratios upon straining were in absolute agreement
with an affine sample deformation. Typical isointensity
curves at different strains are shown in Fig. 1. The radius
of gyration Rg in the isotropic state is 142 ~ 2 A. and is in
accordance with 0-temperature dimensions. No influence
of the cross-linking process on the chain dimensions was
found. The scattering at Q = 0 yields the same molecular

X=1.5 X=2.0

X=2.9

FIG. 1. Experimental SANS pattern from deformed networks
and best-fit curves for strains A = 1.5, 2.0, 2.5, and 2.9. Outer
limits of the principal axes in both directions correspond to
ORg = 13. The stretching direction is vertical.

weight as light scattering from dilute solutions in hexane
and Flory-Huggins corrections for the isotopic mixture are
unnecessary.

Within the framework of the tube model [5] the confor-
mations of the labeled path can be described by the follow-
ing conditional distribution function, describing the actual
configurations R(s) of a network chain for a given mean
configuration R(s):

p (R(s) ! R(s)) — exp( —3/2l„ ds [aR(s)/as]' —g w„' ds [R~(s) —A~R„(s)]') .

The first part of the exponential in Eq. (2) is the Wiener integral and describes the entropy of a free random walk chain,
whereas the second term models the confinement in terms of an entropic potential. The ~~ are the parameters of this
harmonic confining potential. The index p, = x, y, z denotes the main axis directions of the deformation tensor with
components A~ and assuming incompressibility, l„ is the statistical (Kuhn s) segment length, and L is the contour length
of the labeled path, s being the arclength variable.

Using the Warner-Edwards [15] approach as the theoretical basis for the calculation of the form factor of a labeled
path in a network, the chain model of Eq. (2) gives

5(Q, A) = 2 dg
7l

dn' exp —(Z~A~) (q —r1') —Z (1 —A„) 1 —expl—" 2 6R,' g
d' 2 6R,') (3)

!

which factorizes in the principal axes. The double integral
in Eq. (3) runs over dimensionless chain length coordinates
p and g'. The scattering from an affinely deformed chain
is contained in the first term of Eq. (3), whereas the second
term follows from the confinement term in Eq. (2). For
convenience instead of potential parameters now deformed
tube diameters d„are introduced [11].

Rg is the radius of gyration of the labeled path in the un-
deformed isotropic state and Z~ = Q„Rg is a component

of the reduced scattering wave vector in the main axis sys-
tem of the deformation tensor. d~ is defined as in Eq. (1)
and depends sensitively on A~. For A = 1 the Debye curve
is retrieved.

The left part of Fig. 2 shows the contour plots of ex-
perimental data together with the best fit for a macro-
scopic extension ratio A = 2.93 for three values of the

1

power-law exponent v, i.e., v = 0, v = 2, and v = 1.
Considerable differences are noticed in varying v and
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V=
2

FIG. 2. S(Q„Q„,A) as a function of v for the strain A = 2.9.
Strain direction and outer limits of principal axes as in Fig. 1.
Original form factor with axis separability for fluctuation
part d~ (left); modified form factor with effective fiuctuation
parameter d~ (right) as defined in text.

1

only with v =
2 the fit can be accepted. Here, the scat-

tering intensity along both principal axes of the ellipse is
approximated quite well, whereas for off-axis directions
clear discrepancies remain. Both v = 0 and 1 fits are
unable to describe the main directions at the same time
with the same parameters. However, the result for v =

2

shows that the separability of axes does not seem to work
well for the fluctuation part of the form factor and modifi-
cations of the angular dependence of the restoring poten-
tial are necessary.

Equation (3) was obtained expressing the restrictions
on the chain configurations due to topological constraints
and cross-links by harmonic pseudopotentials as in Eq. (2)
by a sum over contributions from the main axes. In
this approximation the exponent in Eq. (3) consists of
a sum of products of the main axis components of the
scattering vector, the deformation ratio, and the mean
square fluctuations. The experimental results in Fig. 2
show a different behavior. It can be obtained introducing
a modified restoring potential. If one defines P as the
angle between the stretching direction and the scattering
vector in the scattering plane, the effective deformation
ratio along this direction is obtained strictly from

A&
=

A~~ cos @ + A~ sin @. (4)

Using this effective deformation ratio A@ as measured for
the local deformation in the vicinity of a restricted chain
the mean square fluctuation probed by the corresponding
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scattering vector is then given by

(5)

We have then to replace d„ in Eq. (3) by the effective
direction dependent value d~ and for S(Q, A) a modified
constraint contribution results. Because of this new

P dependence of the fluctuation range, the presented form
factor is nonfactorizable.

The introduction of such a form of the confining
potential is still compatible with the original Warner-
Edwards approach because only the harmonic dependence
of the confining potential is important for the result.

The right part of Fig. 2 shows the contour plots of
experimental data together with the best fit with Eq. (5)
for the extension ratio A = 2.93 and the three values

1

v = 0, v = 2, and v = 1. The v = 0 case is again shown
and is of course identical with the original form factor.
An affine deformation of the tube, v = 1, can be excluded
on the basis of the pronounced different @ dependence
and on the lack of agreement parallel to the strain axis,

1
whereas the case p =

z shows almost perfect agreement.
After the modification Eq. (3) has the important prop-

erty that for the scattering direction with

gZ„'A' = gZ,' (6)

the second term in the exponent vanishes, and therefore
the scattering is identical with the scattering from the
undeformed sample which also has been recognized by
Bouc [16]. Following this idea we have determined the
actual microscopic deformation on the chain level by
subtracting the data for the reference isotropic state from
the anisotropic data. The microscopic strain component
A~~ follows from simply measuring the isotropy angle @"'

between the stretching axis and zero difference intensity
lines and then solving Eq. (6) for A~~ assuming volume
conservation (A~ = 1/~A~~ ). It results in

1 1

A)(= —q+ q+tan@". (7)

In Fig. 3 the contour plot of the difference of scattering
intensity again for the stretched sample with A = 2.93 and
the isotropic sample is shown. The isointenisty line for
vanishing differences yields the value @"' = 73' ~ 1 and
a corresponding value A~~

= 2.8 ~ 0.3 in good agreement
with the macroscopic extension ratio of the sample. The
theoretical straight line is the vanishing difference of both
best-fit functions. It is noted that the original model of
Eq. (3) with axis separability does not comply with the
experimentally obtained straight line. The uncertainty in
deriving the microscopic strain in this way is estimated
to be better than 10% and permits a quantitative check of
the type of deformation, even at large Q vectors. Within
experimental error the effect of chain ends which may
not be deformed but do contribute to the form factor can
be neglected here and affinity in the deformation found.
Figure 1 show the scattering data for 2 ( QR„( 13 for
all measured extension ratios and their respective fits
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Consequently, we conclude that the tube model for en-
tangled systems with predominant constraint contributions
and their proposed simple nonaffine deformation depen-
dences gives a natural explanation for the occurring mi-
croscopic deformations in the plane spanned by A~~ and
A& and for the appearance of lozengic structures in the
scattering patterns of deformed networks.
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providence of the beam time at the National Institute of
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FIG. 3. Isointensity lines for vanishing difference between
isotropic and anisotropic data for a macroscopic strain A = 2.9.
Straight lines represent the difference between the best-fit
curves. P* is the isotropy angle as defined in Eq. (7).

using Eq. (3) and one single value do = 44 ~ 2 A and
v = ~. The value for the tube diameter is comparable
to results from neutron-spin-echo experiments and plateau
moduli for polyisoprene melts (do = 51 A) [4] and agrees
also reasonably with do = 37 ~ 3 A obtained from the
stress-strain data of the same network. This slightly
smaller value reflects the reduced fluctuations at cross-link
positions. The confinement parameter is constant over
the explored deformation ratio range and demonstrates
that the strain dependence is therefore correctly taken
into account. The agreement with the SANS data in
the whole Q range is almost perfect and proves that
the applied tube model can indeed give a consistent
description of the statistical mechanics of rubberelastic
networks.
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