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Quantum Effects in the Resistivity of Percolation Metal Networks
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We have studied the quantum corrections to the resistance of two-dimensional (2D) percolation
networks of quasi-one-dimensional (1D) wires in which the ratio between the percolation correlation
length g and the quantum lengths L~, Lt could be controllably changed over a wide range. We have
shown that the percolation networks behave like homogeneous 2D conductors with respect to the
quantum corrections if g ( L~, Lr Close to. the percolation threshold ($ && L~, Lr) a crossover to lD
quantum corrections is observed.

PACS numbers: 72.15.Rn, 73.61.At

A conductor can possess both "microscopic" disorder
due to impurity scattering, giving rise to quantum inter-
ference effects (see, for example, [1]),and "macroscopic"
disorder due to long range fluctuations of potential which
leads to the breakdown of conductivity in the percolation
limit. These fluctuations affect the quantum corrections
to the resistance if their typical length scale exceeds the
length scales characteristic of the quantum effects [the
phase coherence length L~ for weak localization (WL)
and the thermal diffusion length L~ for electron-electron
interaction (EEI)] [1]. On the metallic side of the per-
colation metal-insulator transition (MIT) a sample can be
considered to be macroscopically uniform at scales larger
than the percolation correlation length se [2]. Hence, if
the quantum lengths L~ and LT are much larger than s,
then a system is homogeneous with respect to the quantum
effects, and the corrections to the conductivity should de-
pend only on such macroscopic parameters as the dimen-
sions of the sample and its total resistance. This averaging
is no longer valid if se exceeds the quantum lengths. As
s diverges with the approach to the percolation threshold,
a modification of the quantum corrections is inevitable.

This Letter describes an experiment where networks of
very small wires are systematically made more disordered
in order to probe the crossover from weak to strong dis-
order. Nonuniversal behavior of the quantum corrections
to the resistance in the vicinity of the MIT has been al-
ready observed in experiments on three-dimensional (with
respect to the quantum effects) granular films [3] and two-
dimensional (2D) semicontinuous films [4—6]. However,
the geometry of the infinite conducting cluster in those sys-
tems was poorly defined. In addition, 2D percolation films
usually suffer from nonlinear effects in the resistance be-
cause of non-Ohmic contacts between grains. In our ex-
periments we used thin-film networks composed of square
cells with randomly deleted bonds (a classic specimen for
the study of the bond problem in percolation theory), simi-
lar to the percolating networks used to study the effect
of disorder on the superconducting transition [7—9]. The

unique feature of these networks is the stringent size re-
quirements, since the unit cell size has to be sn1aller than
the quantum lengths at low temperatures. These networks
have a well-defined and controllably changed correlation
length and are free of the intrinsic drawbacks of semi-
continuous films. We find that, in spite of the intricate
structure of the samples, the quantum corrections to their
resistivity are universal and two-dimensional provided the
macroscopic disorder is averaged over distances larger
than the quantum lengths. A crossover between the two-
dimensional continuum behavior of a percolation structure
(with respect to the quantum interference effects) far from
the percolation threshold and a quasi-one-dimensional be-
havior close to the percolation threshold has been clearly
demonstrated.

Networks of total length 340 p, m and width 35 p, m
were formed by strips of width 8' = 0.05 p, m and con-
tained more than 70000 square unit cells of size a =
0.4 ~ 0.05 p, m. During the e-beam writing process each
side of a cell was omitted with a probability x fixed
for each sample. All samples with different x values
were patterned from the same gold film with the fol-
lowing parameters: thickness t = 20 nm, mean free path
l = 23 nm, diffusion constant D = 163 cm /s, and resis-
tance per square R ""= 1.87 0, . The values of x varied
from 0 (a regular network) to 0.5 (the percolation thresh-
old x, for the two-dimensional bond problem in a square
lattice [2]). A section of the sample with x = 0.47 is
shown in the inset in Fig. l.

The parameters of the samples are listed in Table I.
The values of the macroscopic sheet resistance measured
across the entire sample at 4.2 K are denoted here as
R (g). The measured resistance of sample a (a regular
network) is in good agreement with R (L &) a) calculated
fron1

R (L » a) = [e D(L » a)n(L )& a)t)

Rmicroa
W
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FIG. 1. AR(H)/R for sample e. The dashed lines are the 2D
dependences calculated from Eq. (4) with the effective R
78 II « R (g). The inset shows a fragment of sample e.

where D(L » a) = D/(2 —W/a) is the macroscopic
diffusion constant [10], and n(L » a) = (2W/a)n is the
macroscopic density of electron states, which is much less
than the microscopic value of n in an unpatterned film
because of the small filling factor 2W/a of the network.
With the approach to the percolation threshold, R (g)
increases in agreement with the theoretical prediction
for a two-dimensional percolation system R (g) ~ (1—
x/x, ) ", where p, = 1.3 [2]. The values of g shown in
Table I were calculated from g = a(1 —x/x, ) " using
v = 4/3 [2]. Both scaling dependences should hold,
strictly speaking, only in the vicinity of the MIT, but,
similar to the results described in Ref. [9], the scaling
dependences hold even far from the percolation threshold.

The temperature dependences of the resistance were
measured between 10 and 0.1 K at magnetic fields H = 0
and H = 600 Oe. Figure 2 shows the data for networks
with different values of x at H = 600 Oe. This magnetic

Sample 8 (Wm) R (F) (II) gMR0
0
0.3
0.4
0.45
0.47

0.4
1.4
3.4
8.6

17

14
50

130
527

1039

14
38
47
51
78

20
—50

TABLE I. Parameters of the samples. x is the probability of
broken bonds, g is the calculated percolation correlation length,
R (g) is the macroscopic resistance per square measured at
4.2 K, Rz is the effective resistance per square extracted from
the magnetoresistance fits, and R is the effective resistance
per square extracted from the 2D EEI temperature depen-
dence fits.

FIG. 2. b R(T)/R = [R(T) —R(4 2K)]/R(4. 2 .K) for samples
a, b, d, and e at H = 600 Oe. The inset shows R(T) of sample
e at H = 600 Oe and H = 0 Oe. The solid line is the 2D
result calculated from Eq. (2) with R = 20 A. The dashed
line is the 1D result calculated from Eq. (3). The offset for the
theoretical and experimental dependences was chosen such that
all of them coincide at roughly 2 K.

field is strong enough to suppress the temperature depen-
dence of the WL contribution below 10 K. Hence, the
remaining temperature dependences should be considered
as a result of EEI only. With increasing x the values of
AR(T)/R initially increase proportionally to the macro-
scopic resistance R (g). For a regular network (sample
a) this dependence is well described below 3 K by the
contribution of the diffusion channel of EEI to the resis-
tance of a 2D conductor [1]

AR;„,(T) TD e

R 2n2fi, (2)

Here Rz is an effective resistance per square used as a
fit parameter. We obtained R = 20 0, which is rea-
sonably close to macroscopic resistance of this sample
[R (L » a) = 14 A]. Hence, sample a can be consid-
ered as a homogeneous 2D conductor with microscopic
disorder at scales characteristic of EEI. For the quan-
tum correction to the resistance due to EEI, this scale is
given by the thermal diffusion length Lz = (AD/kiiT)'/2.
A priori one might expect this behavior only for the
case Lz » $, a. The actual values of Lr, calculated for
D = 163 cm2/s (the diffusion constant for a single strip)
are larger than a only for T ~ 0.8 K, but, apparently, two-
dimensional behavior starts well before LT becomes much
larger than a. This is reminiscent of the superconducting
percolating networks described in Ref. [8], where two-
dimensional behavior was observed well into the inho-
mogeneous regime when the superconducting coherence
length was much smaller than the percolation coherence
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length. The values of b.R(T)/R for sample b are still in
reasonable agreement with the 2D result [Eq. (2)] calcu-
lated using the macroscopic R~(g).

Closer to the percolation threshold the temperature
dependences of the resistance of the samples approach
a limiting behavior in spite of the large differences in
R (g). In other words, hR;„t(T)/R does not scale with
the macroscopic resistance per square R~(g) but instead
approaches the temperature dependence of the resistance
of a single one-dimensional strip. The dashed line in
Fig. 2 represents the temperature dependence of the EEI
correction to the resistance of a single strip, which is one-
dimensional (1D) with respect to EEI (W « Lr) [1]:
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The face that b, R(T)/R for the samples closest to the MIT
approach 6 R(T)/R for a single strip indicates that in these
samples the infinite percolation cluster is one-dimensional
at scales characteristic of EEI. However, even for the
most disordered sample e, the values of AR(T)/R are
still smaller than those of a single strip. We believe this
is due to the presence of dead ends and intersections of
the branches of the backbone of the infinite percolation
cluster. Douqot and Rammal [11] showed that localiza-
tion effects are reduced when 1D wires have intersecting
branches because of the reduction of electron backscat-
tering at points of coordination number higher than 2.
Although there are no calculations, we expect similar
effects for EEI, since two interacting electrons moving
diffusively and close to one another have a larger prob-
ability of becoming separated at a point of large coor-
dination number within the coherence time r, = fi/k&T
Additional evidence of the influence of the intersections
of the backbone and the dead ends is provided by the
magnetoresistance (MR) of the samples, as will be shown
below.

The magnetic field dependences of the resistance
b, R(H)/R for several samples at the same temperature
(T = 0.15 K) are shown in Fig. 3. The observed positive
MR is due to the suppression of weak localization effects
in samples with strong spin-orbit scattering (SOS) [1].
The most noticeable feature of these dependences is the
presence of Aharonov-Bohm (AB) oscillations with a
period AtIt = 4'o —= ~kc/e, where 4 is the magnetic
flux threading one unit cell [1]. If we normalize the MR
curves in Fig. 3 to have the same AR/R value at the
highest field, we see that the amplitude of the oscillations
decreases with increasing x. This is due to the fact that
the number of closed loops of area a~ decreases with in-
creasing x. In strong magnetic fields the MR oscillations
are damped because of the finite width of the strips. We
have not observed harmonics of the AB oscillations, in
agreement with the prediction of Douqot and Rammal for
both percolation and regular normal-metal networks [11].

The most interesting regions of the magnetoresistance
data are the ranges of weak and strong fields. Figure 1
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FIG. 3. The bR(H)/R dependences for samples a, b, c, and
eatT =015K.

(4)

shows the magnetic field dependences of the resistance
for sample e at different temperatures. The low-field
range corresponds to the case when then magnetic flux
through a unit cell is much less than 4o, or, in other
words, the magnetic length LH = (A, c/2eH)'~2 is much
larger than the cell size. In this case the MR is mainly due
to the suppression of the WL contribution to the resistance
from closed loops of size larger than LH. The low-field
AR(H)/R dependences for all samples are well described
by the 2D result of the WL theory (the dashed curves in

Fig. 1), obtained for strong SOS [1]:
gR(H) e (4eHL

R 4vr2fi ( ~c )
where f(y) = P(1/y + 1/2) + ln(y), and P is the
digamma function. For each theoretical curve, two fit
parameters have been used: a temperature-independent
effective resistance per square R~ (the values of Rz
are listed in Table I) and the phase coherence length
L~(T) (see Fig. 4). For samples a and b the values
of R are close to the macroscopic resistance R (g).
For such samples L~ exceeds g, and all peculiarities of
the structure are averaged over the quantum scales. This
is the continuum limit of the theoretical consideration of
the MR of networks by Douqot and Rammal [11]. For
samples c—e, which are closer to the MIT, the values
of Rz are close to one another and become much
less than R (g). This is an expected result: For these
samples L~ && g, and the quantum interference effects
are insensitive to those changes in the structure occurring
at distances of the order of g [which determines the rapid
growth of R (g)]. We would like to emphasize that for
the samples closer to the MIT there is a difference in
the dimensionalities of the quantum corrections to the
temperature dependence of the resistance (due to EEI)
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FIG. 4. The low-field values of L~(T) for several samples.
The dashed line is the temperature dependence L„~T
which is typical for a 10 single wire.

and the low-field MR (due to WL). For EEI, all types of
trajectories of the two electrons interacting twice within
a region of size L ~ LT are important, and the main
contribution to AR(T) comes from 1D diffusion inside a
single strip. For WL, only looplike trajectories of area
larger than @o/H contribute.

The temperature dependences of L~ derived from the
low-field magnetoresistances for different samples are
plotted in Fig. 4. For the samples closer to the MIT
(d and e) the L~(T) dependences are similar to the
L~(T) dependence of a single 1D wire [12]. For single
strips of comparable parameters the dominant phase-
breaking mechanism at low temperatures is quasielastic
electron-electron collisions (the Nyquist phase-breaking)
yielding L~ ~ T 'I3 [13]. For less disordered samples,
the L~(T) dependences depart from those of a single one-
dimensional wire and do not follow a simple power law.
In addition the magnitude of the phase-breaking length
now depends on x. There are predictions for the behavior
of L~(T) for this case, when g —L~ [3,14], but our data
does not afford a quantitative comparison with the theory.

The high-held magnetoresistance of the networks pro-
vides additional evidence of the effect of the intersections
of the backbone and of the dead ends on the quantum cor-
rections. Without this influence, the MR (determined by
the suppression of the one-dimensional interference effects
inside a single strip), would be the same for all the samples,
independent of the probability x, like for percolation net-
works made of "local" field-dependent resistors. Although
the shape of the AR(H) dependences for all samples resem-
ble those for a 1D single strip [12], the values of b, R( )H/R

in strong magnetic fields (when LH becomes much smaller
than the cell size) become larger with the increase of x, as

can be seen in Fig. 3. This is consistent with the fact that,
with the approach to the percolation threshold, the average
distance between nodes with a coordination number larger
than 2 increases, and the reduction of the WL effects be-
comes less prominent. In addition, the ratio between the
values AR(H)/R for samples e and a at the same magnetic
field is about 5 at T = 0.15 K and decreases down to 2 at
3 K. This is also consistent with our picture: As the tem-
perature increases, the quantum lengths become smaller,
and the reduction of the quantum interference effects by
the intersections and dead ends becomes less pronounced,
making the corrections for all samples to be closer to the
corrections for a single wire with no dangling branches.
The role of the dead ends has also been confirmed by our
recent measurements of the quantum corrections to the re-
sistance of 1D wires with periodically spaced dangling side
branches [15].
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