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Experimental Maintenance of Chaos
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We present a method for the anticontrol or maintenance of chaos designed for easy application to
physical and biological systems. The method is based on the return map of the experimental data
and requires only small, very infrequently applied time-dependent perturbations of a single system
parameter and does not require any model equations for or a priori knowledge of the system dynamics.
The method is shown to be able to reliably sustain chaos in a magnetomechanical ribbon experiment.

PACS numbers: 05.45.+b, 75.80.+q

Since Ott, Grebogi, and Yorke (OGY) [1] published
their paper on the theory of the control of chaos, a
major thrust of the work in experimental chaos has been
to convert the chaos found in various physical systems
into periodic motion. Since the experimental control of
chaos was first demonstrated [2] in a mechanical system
(a magnetoelastic ribbon), the control of chaos has been
implemented in lasers [3], electronic circuits[4], chemical
reactions [5], and biological systems [6,7]. Although
chaos control may be very advantageous in many systems
[8], it has been suggested that pathological destruction
of chaotic behavior (possibly due to some underlying
disease) may be implicated in heart failure [9] and some
types of brain seizures [7]. Thus some systems may
require chaos and/or complexity in order to function
properly. Another situation in which the maintenance
of chaos might be useful is the mixing of fluids [10].
Experimental work by Schiff et al. [7] demonstrated an
ad hoc method for increasing the complexity (decreasing
the periodicity) of an in vitro hippocampal rat brain
slice preparation. Recent theoretical and computational
work by Yang et al. [11) indicates that intermittent
chaotic systems can be made to exhibit continuous chaotic
behavior (no intermittent periodic episodes).

The main contribution of this Letter is a general theo-
retical method for the maintenance of chaos, which is then
implemented experimentally in a magnetomechanical sys-
tem demonstrating intermittency [12]. This intermittency
appears as chaos interspersed with long periodic episodes.
This method is readily applicable to experiment and re-
lies only on experimentally measured quantities for its
implementation.

As opposed to the ad hoc method for increasing the
complexity implemented by Schiff et al. [7] (which they
term anticontrol), the method of chaos anticontrol proposed
by Yang et al. [11] is based on the observation that a
map-based system in a regime of transient chaos, such as
that near a transition periodicity into chaos, has special
regions in its phase space that they term "loss regions. "
If the system enters such a region it immediately ceases
its chaotic motion. Yang et al. [11]identify these regions

along with n preiterates of each loss region. If the system
enters a preiterate, they apply a small perturbation to
an accessible system parameter in order to interrupt the
progression of the system toward a loss region. The
perturbation places the system in a region of phase space
that is neither a loss region nor a preiterate of one. This
requires explicit knowledge of the map of the system
and is accordingly difficult to accomplish. Thus the lack
of generality of the Schiff method and the difficulty of
experimental implementation of the Yang method are the
motivation for the present work.

We propose a general anticontrol method that is more
readily applicable to experiment and that relies only on
experimentally measured quantities for its implementa-
tion. To start we make only the following assumptions
about the system: (1) the dynamics of the system can be
represented as an n-dimensional nonlinear map (e.g. , by a
surface of section or a return map) such that points or it-
erates on such a map are given by g„=f(g„~,p), where

p is some accessible system parameter; (2) there is at least
one specific region of the map (termed a loss region) that
lies on the attractor into which the iterates will fall when
making the transition from chaos to periodicity; and (3)
the structure of the map does not change significantly with
small changes 6p —= p —po in the control parameter p
about some initial value po.

On the return map derived from a system, the locations
of loss regions are determined by observing immediate
preiterates of undesired points which correspond to peri-
odic orbits. Clusters of these preiterates are identified as
the loss regions. The extent of each loss region is deter-
mined by the distribution of points in that region (Fig. l ).
The time evolution of each region may be traced back
through m preiterates, as desired.

Next, in a fashion similar to the OGY chaos control
method [1],we change p slightly, observing the resulting
change in each loss region's location, and estimate the
local shift of the attractor g for each loss region with
respect to a change in p as follows:

~f(F., p) ~f(6"p)
~P ~P
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FIG. 1. Return map constructed from experimental data show-
ing the loss region and its preiterates (circles). Region (RL) de-
notes the loss region, region (RL &) denotes the first preiterate
of the loss region going back in time, and region (R„)denotes
the period 1 orbits clustering on the diagonal of the map. The
other four circles denote the (Rl,„)preiterate regions. Any
orbit that falls into any one of the RL,. regions will proceed
directly into the RL l region and then proceed onto the loss re-
gion followed by the unwanted periodic orbit.

As an approximation we take g to be the same for all loss
regions on the attractor for sufficiently small parameter
changes Bp (otherwise calculation of g for each loss
region is required). This is not strictly necessary in order
to implement the method but is simply a convenience that
is approximately true for many systems (including our
magnetoelastic ribbon) and for small 6p's.

Anticontrol can be applied once the system has entered
the mth preiterate of the loss region. Since the map
is constructed as a return map (or delay coordinate
embedding) with g„vsg„&,the y coordinate of the nth
point becomes the x coordinate of the (n + 1)st point.
Since we know the x coordinate of the next point and
the size of the region that this (n + 1)st point would
normally fall into, we calculate a minimum distance that
we must move the attractor so that this next point falls
outside of that region. This distance d is translated into
the appropriate parameter change Bp by Bp, = d, +&/~g~,
where the direction of the motion is along g.

If each of the m preiterates of the loss region is circum-
scribed by a circle of radius r (the worst case), we have
6p„=2r /~g~ where it is understood that the (n + 1)st
point falls into the mth preiterate region. This is the
maximum perturbation needed to achieve anticontrol and
guarantees that the next point will fall outside the mth pre-
iterate region by moving the point one full diameter of the
circle surrounding the loss region. We can improve upon

this worst case. With a return map, we know the x co-
ordinate of the next point. Because we have the choice
of whether to apply the perturbation in either the positive
or the negative g direction, we can select the sign of the
perturbation to move the next point to the left if this x co-
ordinate is in the left half of the preiterate region and vice
versa. Thus the minimum distance to move is reduced to
r and, consequently, 6p, = r /~g~, a significant reduc-
tion in the strength of the perturbation.

Additionally, if the shape of the preiterate region of
interest is approximately linear (linelike) and its slope
is perpendicular to g, then d is at most r and may
approach the thickness of this linear segment (6p„«
r,„~g~). Thus, while not necessary to achieve anticontrol, a
detailed knowledge of the shape of the loss region and its
preiterates can further reduce the size of the perturbation
required to achieve anticontrol.

The experimental system [13] consists of a gravita-
tionally buckled magnetoelastic ribbon driven parametri-
cally by a sinusoidally varying magnetic field. The ribbon
is clamped at its lower end and its position is measured
at a point a short distance above the clamp. The Young
modulus of the ribbon can be varied by more than a fac-
tor of 10 by application of an external magnetic field.
We apply an ac magnetic field of amplitude H„and fre-
quency f added to a dc field of amplitude Hd„such
that H, ~~~;,d(t) = Hd, + H„sin( 2r7ft). We choose f =
0.95 Hz, H„=0.961 Oe, and Hd, = —1.221 Oe in order
to put the system in a state of intermittent chaos. We con-
struct a return map by measuring the position $„ofa point
on the ribbon once every driving period and by then plot-
ting the current position g„vsg„

On the return map, we identify the loss region and
its preiterates (circles in Fig. 1). The loss region (Rl)
is denoted by the circle just to the left of the diagonal.
Its first preiterate (RL i) lies to the right of the diagonal.
The other circles denote earlier preiterates (Rl. ). Points
that enter any of these regions will eventually go to
the region RL &. Once there they will proceed into the
loss region RL on the next iterate. Then the system
becomes periodic. This appears as a cluster of points (R„)
on the diagonal of the map. The points that enter the
preiterate regions mediate the intermittent transition from
chaos to periodicity [12]. During anticontrol we apply a
perturbation when an orbit enters the region RL ] so that
the next orbit will fall out of RI .

The extent of the mth preiterate region is determined
by observing the set of points that after I iterations fall
into the loss region, as well as neighboring points that
do not fall into the loss region after m iterations. The
boundary of the loss region lies between these points.
The g vector is determined by changing po by ~0.0068
Oe. As illustrated in Fig. 1, the two loss regions are very
close to the cluster denoting the periodic orbit. Rarely
during anticontrol the orbit is kicked into the period 1

region. This requires us on the succeeding iteration to
implement anticontrol for the periodic region as well in
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order to safeguard against the system remaining there. Of
course when this happens a somewhat larger perturbation
will be required to move the system away from this
periodic orbit. A value of 0.0237 Oe is adequate to
control this problem in this experiment. A more elegant
but computationally difficult solution would be to choose
the original perturbation so that it avoids all of the loss
regions and preiterates. Though this is possible, ~we chose
not to implement it here.

Figure 2(a) shows the results of the anticontrol. The
first 10000 iterates are run with anticontrol turned off.
During this time, the system intermittently switches be-
tween chaos and the period 1 motion. Once the anti-
control is turned on, the periodic behavior is eliminated
for over 32000 iterates. When the anticontrol is turned
off, the periodic behavior reappears. The correspond-
ing anticontrol perturbations are shown in Fig. 2(b). The
nominal dc magnetic field is —1.221 Oe. During anti-
control the largest perturbation is 1.106lo of this value

(Bp,„=0.020 Oe). Significantly the anticontrol signal
needed to be applied only 0.12%%uo of the time to keep the
system chaotic.

The efficacy of the method is shown in Fig. 3. The first
pane shows a probability histogram of the time series data
for the unperturbed system. The large narrow peak near
x = 4.95 rejects the fact that the system spends most of
the time in a period 1 orbit. (Note the logarithmic vertical
scale. ) Contrast this with Fig. 3(b), where the anticontrol
has been applied. The strong peak has been eliminated,
and its probability has been spread over the rest of the x
values with a distribution that approximates the original
distribution of the intermittent chaotic data.

The effect of the anticontrol may be qualitatively
appreciated by looking at Fig. 4. The 3D histogram in
Fig. 4(a) refiects the density of points over the attractor
(return map, Fig. 1) of the unperturbed system. (Note that
the vertical scale here is linear )Mo.st of the probability
resides in the strong central peak that represents the
period 1 orbit. The density of the points resulting from
anticontrol is presented in Fig. 4(b). Here the probability
is spread over the entire chaotic part of the attractor with
a distribution that approximates that of the chaotic parts
of the unperturbed intermittency chaotic system.

Note that there is still a period 1 peak in Fig. 4(b).
This represents a period 1 motion that does not destroy
the chaos. The anticontrol prevents only the period 1

motion initiated by following the sequence of preiterates
that leads to the loss region and subsequently to the loss of
chaoticity. However, the method does not interfere with
sequences of points that enter the loss region by other
routes and that do not destroy the chaos. This period 1

motion is naturally unstable and is properly one of the
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FIG. 2. (a) Time series from experimental data showing the
system before, during, and after anticontrol. The dashed ver-
tical lines separate the different regions. Before and af-
ter anticontrol, the system is switching between chaos and
periodicity (laminar phase). With the perturbations applied
during anticontrol, the system is rid of laminar phases.
(b) Perturbations applied to achieve anticontrol. Their magni-
tudes are expressed as a percentage of the nominal dc magnetic
field of —1.221 Oe. Bp „=1.106% and the fraction of time
with Bp 4 0 is 0.0012.
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FIG. 3. Histograms of the time series data of (a) the unper-
turbed and (b) the anticontrolled data. Note that the vertical
scales are logarithmic.
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(a) sequence of preiterates that lead to entrapment in a periodic
motion. It is because we take this approach, rather than the
approach of completely excluding the system for the region
of phase space around the unstable periodic motion, that we
are able to maintain the chaos with only rare interventions
(-0.12% of the time).

In summary, we have presented a general method for
the anticontrol of chaotic systems which is straightforward
to implement and need be rarely applied to keep a system
chaotic. This method has been demonstrated to work in a
magnetomechanical experiment with no failures.
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vision of Physics &. Chemistry). W. L. Ditto is supported
by the ONR Young Investigator Program.

(b)

FIG. 4. 3D histograms of (a) the unperturbed and (b) the
anticontrolled data distributed over the attractor (return map)
of Fig. 1. The scale of (a) is enhanced by a factor of 10 in
order to make visible the chaotic transients present in the data.
The period 1 peak (which lies on the diagonal line) is so strong
that it would be off the scale even had the vertical scale not
been enhanced by this factor of 10.

unstable periodic motions that comprise the chaos itself.
Hence it is not removed. To reiterate, we interrupt only the
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