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Mean-Field Theory for Lyapunov Exponents and Kolmogorov-Sinai Entropy
in Lorentz Lattice Gases
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Chaotic properties of a Lorentz lattice gas are studied analytically and by computer simulations. The
escape rates, Lyapunov exponents, and Kolmogorov-Sinai entropies are estimated for a 1D example
using mean-field theory, and the results are compared with simulations for a range of densities and
scattering parameters of the lattice gas. Computer results show a distribution of values for the dynamical
quantities with average values in good agreement with mean-field theory, and consistent with the escape-
rate formalism for the coefficient of diffusion.
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The purpose of this Letter is to describe a simple model
of interest for nonequilibrium statistical mechanics, the
Lorentz lattice gas (LLG), that allows a detailed calcu-
lation of its chaotic dynamical properties as well as its
transport properties. Here we show that such quantities as
Lyapunov exponents, Kolmogorov-Sinai (KS) entropies,
and dynamical partition functions can be calculated for
LLG's over a full range of densities, using analytical
methods as well as computer simulations for closed, pe-
riodic, and open systems. The latter case is of particular
interest, since Gaspard and Nicolis [1] have established
a relation between the transport coefficients of hydrody-
namics and the Lyapunov exponents and KS entropies of
a fractal set of trapped trajectories in open systems. Al-
though LLG's are random systems and not of the type
usually accessible by the methods used widely in dynam-
ical systems theory, we are able to compute their dynam-
ical properties using techniques of statistical mechanics.
Most of our calculations will focus on the dynamical par-
tition function which can be used to obtain all of the other
dynamical quantities of interest [2,3].

A Lorentz lattice gas consists of a moving particle (MP)
traveling on the sites of a d-dimensional lattice with unit
lattice distance and having allowed velocities equal to
nearest-neighbor lattice vectors. The dynamical state of
the particle at any time t is given by its position r and
its velocity c. A fixed number of scatterers N is placed
at random on lattice sites, and the density p denotes
the fraction of occupied sites. We will average over
all quenched configurations of scatterers. The dynamics
of the MP at every time step consists of instantaneous
collisions with a scatterer, followed by propagation, in
which the MP travels from a site to a nearest neighbor. If
the MP arrives at a scattering site with velocity c, it will
be transmitted, reflected, or deflected with probabilities
p, q, s, respectively, normalized as p + q + 2(d —1)s =
1. If the MP arrives at a nonscattering site, its velocity
remains unchanged. The special case of full coverage
(p = 1) is an example of a persistent random walk,
studied by Haus and Kehr [4].

The diffusion of the MP in a LLG has been studied
in considerable detail, and the density dependence of the
diffusion coefficient is well approximated by a simple
expression, which is exact in the one-dimensional case for
all densities [5]. Here we address the chaotic properties of
this system. Although the method described here can be
used for cubic lattices in any dimension, we will consider
one-dimensional systems for simplicity.

We consider a line of lattice points with sites, labeled
r = 1, 2, . . . , L. The sites at r = 0 and r = L + l are
occupied by absorbers, so that no particle (re)enters the
region I. = 1, . . . , L from these sites, and any particle
leaving this region is absorbed. This construction is of
importance for determining the set of trajectories of the
MP that are trapped forever in the bounded region. The
dynamical properties of this set of trajectories determine
the coefficient of diffusion in the escape-rate formalism.

We begin by considering a quenched configuration of
scatterers at density p, and define the matrix of transition
probabilities w(x~y) to be the probability for the MP to
go from a precollision state y = tr', c') at time t to the
precollision state x = trr, c) at time t + 1. For our one-
dimensional example, the velocity of the MP c can only
take on the values ~1. For a quenched configuration of
scatterers with escape the matrix w(x~y) has dimension
2(L —1) and is given by

w(x~y) = w(r, c~r', c') = [a&(r')6(c, c') + b)(r')8(c, —c')]
&& 8(r, r' + c). (1)

Here 6 denotes a Kronecker delta function; if there is
no scatterer at the point r', then a~(r') = 1 and b~(r') =
0; if there is a scatterer, then a~(r') = p and b~(r') =
q. In constructing the dynamical partition function we
will need [w(x~y)]p —= wp(x~y), where P is an "inverse-
temperature-like" parameter, which might be negative as
well. The random matrix wp(x~y) is also given by Eq. (1)
with a&(r) replaced by a(r) = at (r) and b~(r) replacedP

by b(r) —= b& (r). Further, wp is a periodic matrix [6]
with period 2. This follows from the dynamics where
the particle will necessarily move alternately from even
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g wp(x, lx, , ) wp(x, lxo). (2)
Xi, ...,Xt

With the help of the thermodynamic formalism all dy-
namical quantities of interest can be obtained from the
topological pressure Pp(L;xp), defined by

I/fp(L;x ) = lim(1/t) lnZp(L, t;x ) = lnA(P, L), (3)

where A(p, L) is the largest eigenvalue of the random
matrix ~p. This can be understood by observing that
(2) for long times is essentially the trace of a matrix,
i.e., (2L) 'Tr(wp)'. To obtain the average pressure we
have to calculate the quenched average (lnZp) over all
distributions of scatterers, formally analogous to spin
glasses with random interactions [7]. We note that wp is
the analog of the transfer matrix in statistical mechanical
calculations of the partition function of Ising-type lattice
models with random interactions. The large-t limit is the
analog of the thermodynamic limit.

The dynamical quantities of interest here are the escape
rate y(L) of the particle from the lattice, the Lyapunov
exponent A(L), and the KS entropy hKs(L) for the
fractal set of trajectories that are forever trapped on the
lattice. According to the thermodynamic formalism these
quantities are given by

y(L) = -y, A(L) = —P,',
h„(L) = A(L) —y(L.), (4)

where the prime denotes a derivative with respect to p.
For a LLG without escape (y = 0) the Lyapunov expo-
nent is independent of the configuration of scatterers, and
is given by Ao ———pp lnp —pqlnq [8], and Ao = hKs
(Pesin's theorem). In a LLG with escape the exponents
y(L) and A(L) depend on the configurations.

In general, it is difficult to evaluate Zp or A(p), except
for the special case p = 1. Elsewhere we will show that
methods based on the kinetic theory of gases can be used
to compute the various quantities of interest. Here we
show how simple mean-field and scaling approximations
can be used to obtain useful approximations for Zp which
compare well with computer simulations over a wide
range of densities and reAection probabilities. Suppose
the system has a given number of N scatterers distributed

to odd numbered sites or vice versa. This has important
consequences for the proper ergodic decomposition of the
ergodic states of this system.

To construct the dynamical partition function we imag-
ine that the MP is initially placed on the lattice with an
initial phase xo = (ro, cp) and we ask for the probability
P(II, t;xo) that in t time steps the particle follows a tra-
jectory II = ixo, xi, . . . , x,) starting at xo and always re-
maining within the boundaries of the system. Knowing
the hierarchy of t-point functions we can construct the
dynamical partition function as [2,3]

Zp(L, t;xo) = g[P(A, t, xo)] P

in some way over the L lattice sites. For large N and L the
average distance between scatterers is R = L/N = 1/p.
We replace our random lattice with a regular lattice with
scatterers placed a distance R apart. Thus we can pretend
that we are evaluating the dynamical partition function for
a persistent random walk of a MP on an effective lattice
of L/R sites and for an effective time of t/R steps. To
simplify matters further we can suppose that the initial
state xo is located on a scatterer. Then we obtain the result

Zp(L. , t;x,) = Zp(I. /R, t/R).
Here Zp is the dynamical partition function for a persis-
tent random walk on a lattice of L/R = 3V sites during a
time t/R = 2 with absorbing boundaries.

This can be evaluated by noting that the dynamical
partition function for this case is

Zp(DV, 2 ) = (I/23K)Tr(wp)

where w p is the transition matrix for the persistent random
walk, given by Eq. (1) with all a's replaced by a =
pP and all b's by b = qP. Since wp is a 2(3V —1)-
dimensional matrix with period 2, its square can be
put in block-diagonal form, each block corresponding to
an invariant, ergodic subspace where particles on even
(odd) sites remain on even (odd) sites for every two
time steps. We then look for the eigenstates of each of
the two separate blocks of k~ and find that the largest
eigenvalues of both blocks are identical, and denote them
by A2(P, DV). Thus we evaluate Zp = A+(P, DV). For
closed systems the matrix ~p is cyclic, and one easily
finds A(p, 3V) = a + b, from which the above result for
Ao can be recovered. For open systems and large 3V there
is a correction of 6(1/3&2), and the topological pressure
is found to be

Pp(DV) = ln(a + b) —— . (7)
2b 3K+a b)

Our main result is obtained from this equation by scaling
3V = L/R and 7 = t/R with the expected free interval
between scatterers R = 1/p. We find that for a LLG with
N scatterers, distributed at random over L sites, the mean-
field value for the topological pressure is found from (3)
and (6) as

2a 7T
Pp(N, L) = p ln(a + b) ——

2b pL + a/b

Using Eqs. (4) one readily finds

y(L) = f pp'i= „„...,(,)'
&pp'

A(L) = Ao + ln(p/q)
2q ) pL+2p q

The terms of 6(1/L ) are the corrections due to the
absorbing boundary conditions. They have the size de-
pendence expected from the escape-rate formalism [1,9],
which suggests to write y(L) =—Dko, where ko = ~/(L +
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p/pq) is the wave number of the slowest decaying diffu-
sive mode, and D = p/2qp is the mean-field value of
the diffusion coefficient of the LLG. This expression is
exact for one-dimensional systems [5]. Combination of
y(L) —= Dko with the last line of (4) clearly exhibits the
intimate connection between chaos properties and trans-
port properties, as referred to in the introduction. It has
the same form as the corresponding relation derived by
Gaspard and Nicolis for the continuous Lorentz gas in a
periodic array of scatterers.

We now discuss the comparison of these results with
our computer simulations. In order to test to what extent
the mean-field results capture the essence of the chaos
properties for the LLG, we numerically determine the
largest eigenvalue of the large random matrix wp of lin-
ear dimension 2(L —1). In every quenched distribution
of scatterers the secular determinant of this rather sparse
random matrix is calculated from a two step recursion re-
lation. Its largest root A(P, 3V), the topological pressure
Pp(DV), and its derivative in Eq. (9) are computed nu-

merically. Then we average over an ensemble of differ-
ent configurations of N scatterers, placed at random on a
lattice of L sites.

For the escape rate the agreement between mean-field
theory (MFT) and simulations is excellent, as would be
expected, and we first consider the distribution of escape
rates over the members of the ensemble. It appears to
be a very narrow Gaussian-type distribution with a width
less than 5% of the mean. We introduce the reduced
escape rate g —= (y/p) (N + p/q)2, which is predicted to
be independent of the density p, the number of scatterers
N = p L, and system size L, and measure it typically over
3 X 10 configurations of scatterers. It varies by less than
0.5% over the whole density range (0.1 ~ p ~ 0.9), and
over different system sizes (N = pL = 50, 100, 200, 400),
and differs by less than 0.5% from the MFT prediction
~ (p/2q). This also implies that (lnA(1)) should be
nearly equal to ln(A(1)). In fact, they are found to be
equal within statistical errors. At N = 10 there are sizable
finite size effects as is to be expected on the basis of (9).

The measured Lyapunov exponents show huge varia-
tion over different placements of scatterers, resulting in
a very broad distribution with a width much larger than
the mean. This is illustrated in Fig. 1, which displays the
probability distribution P(Z) of the reduced Lyapunov ex-
ponent 8 =—(AA/p) (N + 2p/q)~, with AA = A(L) —Ao.

Table I compares the MFT results for the reduced
Lyapunov exponent at different (N; p) values with (8),
resulting from computer simulations averaged over 3 x
10 scatterer configurations, except at N = 200 and p =
0.2, where 5 X 107 runs were used, and at N = 200 and

p = 0.5, where 2 X 10 runs were used. The required
CPU time on a DEC 3000 n machine is typically 10 3N

days per 10 runs.
The variance w~ = (4 ) —(8)2 depends strongly on N

and only weakly on p. At p = 0.8 the ratio w/(8) is
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FIG. 1. Probability distribution P(f) of reduced Lyapunov
exponent 8 in a LLG with N = 200, 1. = 1000, and p = 0.2,
taken over 10' configurations. P(f) is a very broad Gaussian
distribution with (Z) = —1.9 ~ 0.3, width w = 5OOl(f)l = 90'),
and kurtosis 0.02.

about 6, 20, 100 for N = 50, 200, 400, respectively. Nev-
ertheless, when averaging over typically 3 X 10 runs the
mean (8) remains independent of density and system size,
and is in good agreement (within 2% to 4%) with the MFT
prediction (8) = ~2(p/2q) In(p/q). One can also see a
small systematic density variation in the results for (8).
At small p values (P —0.2) the distribution becomes very
broad, as (8) and (8)/w decrease by a factor of 20. Finite
size effects and density dependence of (8) become more
pronounced with systematic deviations from MFT up to
7%. At p = 0.5 the MFT prediction is (8) = 0. In an
LLG with N = 50 scatterers, the mean (8) is nonvanish-
ing (w = 300(4)), and shows again a weak, but systematic
density dependence. The deviations from the asymptotic
MFT may be ascribed to finite size effects. For larger sys-
tems (N = 200) the simulation results are consistent with
a vanishing MFT prediction, but the error bars are very
large. Similar broad distributions are expected to occur in
continuous Lorentz gases with escape [10].

It is important to emphasize two consequences of these
very broad distributions: (i) The error bars, as listed

(N; P)
(50;0.2)
(200;0.2)
(50;0.5)
(200;0.5)
(50; 0.8)
(200;0.8)

0.2
—1.2S'
—1.7'

071
0 33

29.0'
27 7

Density p

0.5
—1.30'
—1.4'

0.6'
0.32

2S.75

2S.14

0.8
—1.40~

0.5'
0.5'

28.4'
27.6'

MFT

1
—1.71
—1.71

0
0

27.35
27.35

TABLE I. Average reduced Lyapunov exponent (f) at differ-
ent (N; P) values. A superscript a denotes a statistical error of
~a in the last digit.
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in Table I, have little bearing on the predictability of
the outcome of a single measurement. For instance,
the data used in Fig. 1 yield (8) = —1.9 ~ 0.3, where
the statistical uncertainty 0.3 in the average is calculated
over 10 runs. On the other hand, the distribution P(8)
in Fig. 1 gives only the very weak prediction that the
outcome of a single measurement 4 will be in the
interval (—1.9 —900, —1.9 + 900) with a 66% confidence
limit. (ii) According to Eqs. (3) and (4) the proper
way to obtain mean values of Lyapunov exponents is
to calculate (A'(1)/A(1)), rather than (A'(1))/(A(1)), i.e. ,

taking the logarithm and the quenched average should not
be interchanged. Following the latter prescription leads
to values that may be up to factors of 6 larger or smaller
than (8), depending on density and transmission rate.

More details about the derivations of the theoretical re-
sults, about the numerical analysis of our sparse matri-
ces with random elements, and about the effects of rare
configurations will be published elsewhere. Calculations
of topological entropies, and studies of possible dynami-
cal phase transitions in higher-dimensional LLG s are in
progress, as well as extensions of these ideas to random
walks in random environments.

We conclude with the following remarks:
(i) The average values of the dynamical quantities,

escape rates, Lyapunov exponents, and KS entropic s

[through Eq. (9)], averaged over a large number of 3 X
10 to 5 X 10, are close to the predictions of mean-field
theory for all densities, sufficiently large system sizes, and
all model parameters describing the scattering of MP's in
LLG's. The probability distributions of these quantities
over different placements of scatterers are very broad and
of Gaussian form, and the mean values do not seem to be
affected by rare events.

(ii) We have been able to show that a variety of meth-
ods from statistical mechanics can be usefully applied to
determine properties that characterize the chaotic behav-
ior of nonequilibrium systems. The present results for
LLG's are closely related to the calculation presented in
the preceding Letter by van Beijeren and Dorfman for the
continuous Lorentz gas in two dimensions [10]. The sim-
plifications present in LLG models allow a deeper explo-
ration of systems at high density, but there are many close

connections between the two systems, as well as with sys-
tems with other transport processes taking place.

(iii) A more systematic approach to the calculations
of dynamical quantities for LLG's can be based on
kinetic theory methods. Such a study will lead to an
understanding of the contributions to Lyapunov exponents
of the detailed dynamical events taking place in the
system.
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