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Using two specific models and a model-independent formalism, we show that in addition to the usual

9 <

quadratic “side,

out,” and “longitudinal” terms, a previously neglected “out-longitudinal” cross term

arises naturally in the exponent of the two-particle correlator. Since its effects can be easily observed,
such a term should be included in any experimental fits to correlation data. We also suggest a method
of organizing correlation data using rapidity rather than longitudinal momentum differences, since in
the former every relevant quantity is longitudinally boost invariant.

PACS numbers: 25.75.+r
The experimentally measured Hanbury-Brown—Twiss
(HBT) correlation between two identical particles emitted
in a high energy collision defines a six-dimensional
function of the momenta p; and p, [1]. A popular way
of presenting these is in terms “size parameters” derived
from a Gaussian fit to the data of the form [2-5]

C(q,K) = 1 = dexp[—¢?R*(K) — ¢2R2(K)

- q/R}(K)], M
where q = p; — p2, K= %(pl + p2), the + (—) sign is
for bosons (fermions), and the HBT Cartesian coordinate
system is defined as follows [6]: The “longitudinal” or 2
(subscript 1) direction is parallel to the beam, the “out” or
% (subscript o) direction is parallel to the component of K
which is perpendicular to the beam, and the “side” or §
(subscript s) direction is the remaining direction.

In this Letter we assert that significantly more can be
learned and better fits achieved if an “out-longitudinal”
cross term is included in any Gaussian fits to the data. In
other words, we suggest that the data should be fitted by a
function with the following form:

C(q,K) = 1 = rexp[—¢?RZ(K) — g2R2(K)

= GiR{(K) = 2q,q:R5(K).  (2)
where R2, is a parameter which can be either positive or
negative; we simply use the R? notation to denote the fact
that it is has the dimension of an area.

Since particles 1 and 2 are indistinguishable, the overall
sign of q is irrelevant. The relative signs of the various
components of g, however, are well-defined physical
quantities for any given pair. Our sign convention for
q will be such that g, is always positive. We can thus
unambiguously discuss correlations for negative as well
as positive values of both g, and g;.

To see how an out-longitudinal cross term arises in
two-particle correlations, we use the following well-
established theoretical approximation [7,8]:

| [ d*x S(x, K)eid*|?

Clq,K) =1 = s 3
(q ) |f d4xS(x,K)|2 ( )
where qo = E; — E», Ko = Ex = /m? + |K|2. Here

S(x,K) is a function which describes the phase space
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density of the emitting source. For pairs with |q| < Eg,

q-x = (Bogo + Big)t — qox — g5y — qiz, (4)
where Bi = Ki/EK.
As a simple example, we consider the following cylin-
drically symmetric Gaussian emission function:

x (t — ty)?
St K) = f(K) eXp[ 2R? 202 2512 }
&)
Using (3) and (4), it is easy to see that the corresponding
correlation function takes the form
Ca.K) = 1 * exp{—q{R* — g;[R* + B;(51)’]
- qilL? + B7(61)%]
- 2%‘]1,30,31(&)2}- (6)
For this model, the g,q; cross term thus provides a
measurement of the duration of particle emission (5¢).

One might think that this cross term is just a trivial
kinematic effect which would not arise if the correlation
were calculated in some more carefully chosen coordinate
system or reference frame. For example, for spherically
symmetric systems (L = R), it has been shown that
the cross term vanishes if axes are chosen parallel and
perpendicular to K (rather than parallel and perpendicular
to the beam) [9]. The reader can verify, however, that
for systems with L # R the cross term does not vanish in
these rotated coordinates, but rather measures the L? — R?
asymmetry of the source.

Another system that is often proposed is the longitu-
dinally comoving system (LCMS), which is defined as
the frame in which B8, = 0 [4,5,10]. Glancing at (6), it
naively appears that the cross term will vanish in this
frame. Being more careful, however, one can see that
after transforming to the LCMS frame (primed variables)

=yt — Biz), ' =y (z — Bit), (@)

where y, = 1/\/1 — B7, t'z/ terms arise in the trans-
formed emission function S’. These in turn lead to a non-
vanishing cross term of the form

REZ = B,Biyi(81)* + L?], (8)
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where B; and vy, are evaluated in the center of mass frame.
We can see that the cross term cannot, in general, be
removed simply by transforming to another coordinate
system or reference frame, and therefore it is certainly
not just a trivial kinematic effect. In fact, Rgl contains
physical information about the emitting source which
is just as important as that found from evaluating the

C(@q.K)=1={l — gXy> — (qo(Bot — x) + qi(But

where the g,q, and g,q; terms vanish due to cylindrical
symmetry [8] and we have introduced the notation

[d*x € S(x,K)

) = (@ K) = L ETEE,

(10)

Exponentiating (9), we see that for any cylindrically
symmetric system the correlation function for small mo-
mentum differences (¢;R; << 1) can be expressed in the
form of Eq. (2), where A = 1 and the functions R?(K) can
simply be read off as the coefficients of the corresponding
qiq; terms in Eq. (9):

RZ = (y?) — (y)* = (YD,

R2 ={(x = Bo1)*) — (x — Bo1),

R} =z — Bit)® — (z — i),

R =((x = Bot) (z = Bit)) — (x — Bot)(z — Bit). (11)

These expressions have the typical form of variances and
show that the HBT “‘size parameters” are really lengths of
homogeneity associated with the source function S(x, K)
[12]. For a static source, these homogeneity lengths are
equal to its geometric size in the various directions which
can then be directly extracted from the HBT correlator.
For expanding sources the interpretation of the HBT
size parameters is more involved [7-10,12,13], and the
HBT parameters are usually smaller than the geometric
extensions of the source. The cross term is seen to
measure the temporal extent of the source as well as the
xz, xt, and zz correlations of the emission function. Note
that the LCMS radii can be found from (11) by setting
B; = 0 and using S(x’,K’) [see Eq. (7)]. The cross term
vanishes in this frame if and only if the source S(x/, K’)
is reflection symmetric under z’-— —z’ [which is not the
case for our source (5)].

One might argue that the model independent expres-
sions of Eq. (11) should not be compared to experimental
correlation radii, since the former measure second deriva-
tives of the correlation function around q = 0 (because
we used g-x < 1 to derive them), while the latter are pa-
rameters of a Gaussian fit by the whole correlation func-
tion [2—5]. On the other hand, for any source which has
a roughly Gaussian profile in some complete set of spa-
tial coordinates, the two different methods of measuring
radii will give roughly the same results. For these types

- Z)]2> + <QO(Bot

difference R2 — R2.

In order to get a broader feeling for what the cross term
measures, we now introduce a general formalism valid
for any cylindrically symmetric emission function which
can be expressed in a roughly Gaussian form. Using
(4), we expand exp(ig-x) in (3) for g-x << 1 to find (see
(11D

—x) + q(Bit — 2))* + Ol(g)*T, 9

[

of models, the simple expressions generated by Eq. (11)
provide valuable insights as to how various parameters of
the source distribution qualitatively affect measurable fea-
tures of the correlation function.

We already discussed one Gaussian model in Eq. (5),
but here we would like to discuss another, possibly more
realistic, model which is similar to the ones presented in
[13]. In the center of mass frame of an expanding fireball,
we define the following emission function:

7o m, cosh(n — Y) [_K-u(x)}

Q)3 12w (657)2 T

S(x,K) =

p’ n’ (r = 10

x eXp[ 2RE  2067m)? 267y } (12)
where T is a constant freeze-out temperature, p
VY 7 == = 5 In[(t +2)/(t — )] m, =
Jm? + K%, and Y is the rapidity of a particle with mo-
mentum K. Note that in the limit §7 — 0, (12) becomes
the Boltzmann approximation for a hydrodynamic system
with local flow velocity u(x) which freezes out on a
three-dimensional hypersurface of constant longitudinal
proper time 79 and temperature 7 [8,14]. We will
consider a flow which is nonrelativistic tranversally but
which exhibits Bjorken expansion longitudinally

ulx) = (1 + %(Up/Rg)z]COShT), vx/Rg,

vy/Re, [1 + 3(wp/Rg)’Isinhm),  (13)
where v < 1 is the transverse flow velocity of the fluid
at p = Rs. In [8] we show that when the emission
function (12) is integrated over spacetime, it produces a
very reasonable one-particle distribution.

To facilitate calculating the correlation function, we can
make the physically reasonable assumption that §7/7p <
5 so that we can be justified in replacing integrals over
only positive values of 7 with ones ranging from —« to
+o. We can then achieve analytic results by making a
Taylor expansion [8] in the parameter

1 1 m;
=+ L,
(é6mz (Gm?* T
Note that for pairs in which m,/T > 1/(6n)? as were
studied in [15], (8 )2 becomes simply T /m;.

Using the expressions (11) and keeping a few sublead-
ing corrections which are important when considering pi-
ons [8], we find

(14)
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K7 K% 2 Y
R} = R:, R} =RI+ —5(67)°+ =3B+ —5| 1+ B} = 2B1 = |(67)*(67)2
m; m; m; (677)2
K? Ll , Y 1 4
+ — - — 4+ = |(6
2 TO[BI v = 2B (57)? > (6m)s,
m? m? m?
R} = 5 6(8) + ARG o vr5(8m)L,
R% = ~BoBird@n)? — Bo| Br — s |37 — Bord| Biv — —— |6 (15)
ol o 0 * o (577)2 * o' 1 (57])2 * 3
where I the boost invariance of the emission function. It can be
1 1 m, verified that if a source is completely boost invariant then
4R = E (1 + TV ) (16)  the cross term will always vanish in the LCMS frame
* [15]. However, any source with a finite size (67 < )
2 ! 2 . Yy
and v = 1 + (R«/Rg)* — 3(m,/T)(8m):. As pointed out  cannot be completely boost invariant, so it will, in general,

in [13] and seen from Eq. (16), transverse flow causes
the side radius to measure something smaller than the
real geometrical radius R;. What it does measure is the
transverse region of homogeneity of the fluid as seen by
particles with a given p, [8,12]. It is also interesting that
R? — R? depends on the average rapidity and is not quite
directly proportional to the duration of particle emission
67 even for pairs with B, = 0 [16]. In our opinion,
however, the most interesting feature of this model is
the cross term radius Rgl. Although just as in Eq. (6)
the cross term vanishes for pairs with either 8, = 0 or
B; = 0, it will, in general, have an important effect on the
correlation function, especially for pairs with large |Y|.

The effect becomes most easily apparent when we plug
in some numbers and plot the correlation function. For
simplicity, we consider a pion source with no transverse
flow (v = 0) which freezes out instantaneously (57 = 0)
with the following other source parameters: R = 3 fm,
70 = 4 fm/c, §m = 1.5, and T = 150 MeV. Restricting
ourselves to pairs with ¥ = —2, K, = 200 MeV, and
gs = 0, we can now calculate the correlation function
both by using the approximate analytic radii of (15)
and by performing a numerical calculation directly from
Egs. (3) and (12). Comparing the results, we have found
that the Gaussian approximation of (2) with the radii
of (15) is able to describe the numerically calculated
correlation function to within about 20% [8]. Figure 1
shows a plot of the latter as a function of g, and g;. The
effect of the cross term can be seen in the form of an
asymmetric ridge running from the peak at g, = g; = 0
down to the front left where ¢; > 0 and g, < 0. This
kind of ridge is clearly identifiable experimentally and
has, in fact, already been seen in preliminary NA35
correlation data [17].

Because of the boost invariance of the flow profile,
the LCMS radii corresponding to the above model can
be obtained simply by setting B; = 0 and Ex = m, in
(15). Note that the factor ¥ in the second line of RZ
should not be set equal to zero, since it arises from the
n distribution of the source (12) which obviously breaks
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feature a nonvanishing cross term in the LCMS, since the
LCMS does not coincide with the local rest frame [18].

We would now like to suggest a better way of orga-
nizing correlation data from sources undergoing boost-
invariant longitudinal expansion [19]. Returning to (3),
let us make an alternative on-shell definition of the four-
vector K:

K = (m, coshY,K,, m, sinhY), (17)

where K, = 3 (pi, +p2), m> = m> + K2, ¥ = 5 (y, +
y2), and y; is the rapidity of the ith particle. The resulting
approximation is at least as good as the approximation we
have been using up to now [8]. This definition suggests
that we express the correlation function in terms of ¢, g,
and the rapidity differencey = y; — ya:

C(Y»C]s, QI)Y’ Ki) =1=* /\exp[_quaz - quz

- y*a? — 2g,YRoy].
(18)

The reader should take care not to confuse the rapidity
difference y with the Cartesian coordinate y.

The model independent expressions corresponding to
(11) are now given by

o 400

-120 -60

0
Gout (MeV)

FIG. 1. The numerically calculated correlation function (3)
generated by the pion source (12) with parameters v = 67 =
0, Rg =3 fm, 70 =4 fm/c, §n = 1.5, and T = 150 MeV is
plotted as a function of ¢; and ¢, for Y = —2, K, = 200 MeV,
and g, = 0.
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R = (%), RX([x — (K. /m)71cosh(n — Y)*) — (x — (K. /m,)7 cosh(n — ¥))?,
a’ = ((m,7sinh(n — Y)I*) — (m,7sinh(n — ¥))?,
R,y = {{mx — K, 7cosh(yp — Y)]rsinh(ny — Y)) — (m,x — K, 7cosh(n — Y)){rsinh(n — Y)). (19)

For the model (12), the radii take the much simpler form:

2
R}=RI, R.=Rl+ _fﬁ {0+ G177 + 36ming), o = mAEmAr[l + v(Em3] + (87,
K.Y
R,y = (6;)2 (5n)2(8n)irE + (67)%]. (20)

The astute reader will note that the above side and out | Financially, this work was supported by BMBF and DFG.

radii are identical to the LCMS versions of (15), and
that aside from a slight difference in the definition of Y,
R/(LCMS) = @/m, and R}(LCMS) = R,,/m,. In fact,
for systems undergoing Bjorken longitudinal expansion,
LCMS correlation functions are nothing more than ap-
proximations to fixed frame correlation functions in ra-
pidity coordinates [8].

Using the same source parameters as in Fig. 1, the effect
of the cross term can be seen in Fig. 2 where we plot
the correlator as a function of y for ¢, = 30 MeV. The
accuracy of the analytic approximation (dashed) is seen by
comparing it with the exact numerical result (solid).

We have shown that an out-longitudinal (or “out-
rapidity””) cross term arises naturally both in a general
Gaussian derivation of the correlation function and in
two specific Gaussian models. Although transformed, in
general, the cross term persists when one switches from
calculating momentum differences in a fixed frame to
calculating them in the LCMS. Consequently, there is no
reason why such a term should be excluded a priori from
Gaussian fits to experimental correlation data. Not only
will the new parameter reveal more information about
the source, its inclusion will undoubtably increase the
accuracy of the other fitted radii.

We would like to thank U. Mayer, T. Csorgo, M. Gy-
ulassy, and Yu. Sinyukov for enlightening discussions.
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FIG. 2. The same parameters as in Fig. 1 are used to plot
the correlation as a function of y = y, — y, for ¢, =0

(upper curves) and g, = 30 MeV (lower curves) as calculated
numerically (solid curves) and analytically via (15) (dashed
curves).
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