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Quantum Monte Carlo Calculations of A ~ 6 Nuclei
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The energies of 'H, 'He, and He ground states, the — and — scattering states of 'He, the ground
states of He, Li, and Be, and the 3+ and 0+ excited states of Li have been accurately calculated with
the Green's function Monte Carlo method using realistic models of two- and three-nucleon interactions.
The splitting of the A = 3 isospin T = — and A = 6 isospin T = 1, J = 0+ multiplets is also studied.
The observed energies and radii are generally well reproduced, however, some definite differences
between theory and experiment can be identified.

PACS numbers: 21.10.Dr, 21.45.+v, 21.60.Ka, 27.10.+h

A system of interacting nonrelativistic nucleons is the
simplest model of nuclei. Even in this simple model exact
calculations have been possible only for a limited number
of light nuclei due to the strong spin-isospin dependence
of nuclear forces. For many years, only two-nucleon
states could be exactly calculated. Next, the Faddeev
method was used to study the three-nucleon states [1,2].
In the past decade, many advances have become possible
due to the development of supercomputers. Quantum
Monte Carlo methods were used to study nuclei with
A ~ 5 [3,4], the 4He ground state was calculated with
the Faddeev-Yakubovosky method [5], and methods using
hyperspherical functions were developed to study low-
energy three- and four-nucleon states [6]. In this Letter,
we report the first realistic six-nucleon (6N) quantum
Monte Carlo calculations along with updated results for
nuclei with A ~ 5. Until now the A = 6 nuclei have been
mostly treated as three-body systems with an n and two
nucleons [7].

It appears possible to extend these calculations to sev-
eral seven- and eight-nucleon states. Unlike the A = 2 to
4 nuclei, the A = 6 to 8 nuclei have a spectrum of bound
states indicating shell structure and spin-orbit coupling.
Exact calculations of these nuclei will be useful to probe
the physics of the shell model, to construct realistic mod-
els of three-nucleon interactions, and will provide wave
functions to study electron-scattering observables and re-
actions of interest in astrophysics.

The new Argonne v~s two-nucleon interaction [8] is
used here. It is expressed as a sum of four parts:

&18 U14 + &cib + I csb + Uem ~

Its dominant part v14 contains 14 isoscalar operators as
in the old Argonne v~4 [9]. The charge-independence-
breaking part v„b has three isotensor terms with operators
[3 ,, ,r, —r~; ~,] [1, tr; tr, , S;,] and includes the effect

of the mass difference between charged and neutral
pions. The isovector charge-symmetry-breaking part v„b
contains the operator 7.;, + ~j„and the electromagnetic
part v, contains Coulomb and magnetic interactions in
all pairs. The kinetic energy operator associated with this
model has isoscalar and isovector parts denoted by K and

&csb

1%+K„b= ——g +4, mp
')v

r V, . (2)
Inn

H=K+ v8iJ + V (3)

The interaction vs(ij) has eight terms, with operators
[l, v;. v, ] S [1,tr; cr, , S,, L.S], chosen such that it

Because of its careful treatment of isospin-symmetry-
breaking terms, the new Argonne v18 model is well suited

1

to study the mass differences between the T = 2, 3He-3H

doublet and the T = 1, J = 0+, 6He- Li- Be triplet.
Three-nucleon interactions V;,k described with the Ur-

bana model [10] are included in the nuclear Hamilton-
ian. These contain a two-pion exchange part V;JI, with
its strength A2 chosen to reproduce the observed bind-
ing energies of 3H and 4He, and a phenomenological
spin-isospin independent interaction V;jj, of strength Uo

adjusted to obtain the empirical equilibrium density of
nuclear matter. In Urbana models IX (VIII) of V;,k,
to be used in conjunction with the new v» (old v&4),
these parameters have values A2 ———0.0293 (—0.028)
and Up = 0.0048 (0.005) MeV.

The Green's function Monte Carlo (GFMC) calcula-
tions [3,4] are carried out with a simpler isoscalar Hamil-
tonian:
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+(r, R) = dR G(R R &)IIpv(R ), (4)

G(R, R', r) = (R(e ( ")'(R') (5)

s R r) distributed with probabilityg
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th 11-t 1
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X I,(R')I, (R'),

—m(R —R')2

2h2kr
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with excitation energy )50 MeV. The E(r) of the 6N
states, in contrast, decreases by -4 MeV from E, and
does not appear to have reached the ~ ~ asymptotic
value at 7. = 0.06 MeV '. The statistical error, governed
by variance of H' P„(R)i+ (R), is larger in the 6N E(r)
These indicate that the 6N W are not as accurate as the
4He W and that they need to be improved for more accu-
rate GFMC calculations.

The average value of E(r) in the r interval 0.03 to
0.06 MeV ' is listed as E in Table I. The E of H, He,
and 5He can be identified with their ground state energies,
however, those of the 6N states can only be regarded as
upper bounds. It is difficult to extrapolate the 6N E(7).
to r ~, particularly due to the large statistical errors;
nevertheless, we have attempted it in the following way.
Let W; be the eigenstates with quantum numbers g and
energies E;. The W contains admixtures of W; with
amplitude P; in addition to the 'Po of the lowest-energy
state. Admixtures with the smallest E; —Eo determine
the behavior of E(r) at large r. We approximate the
contribution of low-lying states with two delta functions at
E~ and E2 with amplitudes Pt and P2. It is experimentally
known that the lowest T = 0, J" = 1+ (3+) resonances
in 6Li are 5.65 (-13.6) MeV above the 1+ (3 ) bound
states [15]. Accordingly, we assume that E& —Eo =
5.65 (13.6) MeV for the 1+ (3+) states and, in absence
of experimental data, use the value 13.6 MeV also for
the T = 1, J = 0 . Further assuming that E2 —Eo =
30 MeV the calculated values of E(r ) 0.01 MeV ') are
fitted by varying Eo, Pt, and P2. Fortunately, the fits are
not very sensitive to E2 —Eo and are shown in Fig. 1.
The resulting value of Eo is listed as the calculated energy
in Table I. The error in the extrapolated Eo is much larger
than that in E and less reliable.

The expectation values of various terms in the Hamil-
tonian are also listed in Table I. These are averages over
the interval ~ = 0.03 to 0.06 MeV ', calculated using

correct up to order I'P(r)& —IW ). The dominant (vt4&
and (K) have similar values in He and 5He, while in
the 6N states they are closer to the sum of their values
in 4He and ~H. The (V;,k) are similar in He, sHe, and
6N states. The (vLs) contains both L S and L . S(~; v, )
terms in the NN interaction. They contribute, along with

3 1

V;,t. [16], to the splitting between 2 and 2 states of
5He. However, the calculated splitting of 0.8 (3) MeV is
much smaller than the observed 1.4 MeV. The magni-
tudes of (vLs) and (V;,k) are larger in the 6N 0+ and 3+
states than in the 1+, suggesting that the 1+ has less con-
tribution from the (p z)~ configuration than the other two.
The underbinding of the 6N 0+ and 3+ states by —1 MeV
is probably related to that of the 5He

2 state. In 5He,3

only the expectation value (vz",„~& of the Coulomb inter-
action between protons is calculated. The other terms in

(v, ) for 5He (given in parentheses in Table I) are taken
from VMC calculations. The (vc, „~& decreases by —5%
from He to He, indicating that the n cluster expands as
we go from A = 4 to 6.

The last three lines of Table I give rms proton and
neutron radii. The calculated values of R(p) compare
well with the those extracted from observed charge radii
[17]. The experimental R(p) of 3He is 1.77 fm, in
reasonable agreement with the calculated R(n) of 'H. The
Coulomb interaction accounts for most of the isovector
6Be-6He difference (Table II). Since this difference is
correctly predicted, the R(p) of 6Be, assumed to be equal
to the R(n) of 6He, appears to have a reasonable value.

The contributions of v, , v„b, v„b, and K„b, treated
as first order perturbations in this work, are responsi-
ble for the energy differences within the T =

2 3N and
T = 1, 1 = 0+ 6N multiplets listed in Table II. The
present Hamiltonian explains the isovector energy differ-
ences He- H and Be- He fairly well. The three-body
calculations show that the isovector v„b and K„b are nec-
essary to obtain the observed He- H difference, in agree-
ment with earlier results of Faddeev calculations [18].
Unfortunately, the calculated value of the isotensor dif-
ference 2 (6Be + 6He)-6Li is much larger than observed.

TABLE I. Calculated energies and radii in MeV and frn.

Nucleus (J)

E (Expt. )
E (Calc. )
F.
(K)
(v 14)

(V„')
(VLs)
(v. )

PP
&Coul

R(n)
R(J )
R(p) (Expt. )

'H(1)

—2.22
—2.22
—2.22
19.9

—22. 1

0
—0.08

0.018
0
1.967
1.967
1.953

'H(-)

—8.48
—8.47(2)
—8.47(2)
50.0(1)

—58.0(1)
—1.20(3)
—0.20(5)

0.039(1)
0
1.72
1.58
1.61

4He(0)

—28.3
—28.3(1)
—28.3(1)
118.0(1)

—142.0(1)
—6.5(3)
—0.4(1)

0.879(5)
0.761(2)
1.42(1)
1.42(1)
1.47

'He(-)
2

—27.2
—26.5(2)
—26.5(2)
122.0(2)

—145.0(2)
—7.0(4)
—1.2(1)
(0.87)
0.745(3)
3.02(3)
1.84(2)

'He(-, )

—25.8
—25.7(2)
—25.7(2)
117.0(2)

—140.0(2)
—6.4(4)
—0.4(1)
(0.87)
0.751(3)
3.57(3)
1.99(2)

'He(0)

—29.3
—28.2(8)
—27.3(4)
146.0(4)

—172.0(4)
—7.0(7)
—2.7(3)

0.87(1)
0.724(8)
2.62(1)
1.89(6)

6Li(1)

—32.0
—32.4(9)
—31.1(4)
143.0(3)

—173.0(3)
—6.2(6)
—1.5(5)

1.71(2)
1.55(2)
2.41(5)
2.41(5)
2.43

'Li(3)

—29.8
—28.9(6)
—28.2(3)
138.0(3)

—165.0(3)
—6.9(5)
—3.0(4)

1.72(2)
1.57(2)
2.46(7)
2 46(7)
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TABLE II. Energy differences in MeV within isospin multi-
plets.

ment of Energy, Nuclear Physics Division, under Contract
No. W-31-109-ENG-38.

'He-3H 'Be-'He -(6Be + bHe)-bLi
2

(&em)

(&-b)
&csb

Ucib

b (Calc. )
b, (Expt. )

0.677
0.014
0.066
0
0.757(1)
0.764

2.33
0.036
0.116
0
2.5(1)
2.35

0.33
0
0
0.28
0.6(1)
0.34

The observed difference is essentially explained by the
electromagnetic interaction alone. This is very puzzling
because most of the contribution of the isotensor v„I,

to this difference should be from the relative 'So two-
nucleon state in which the difference between pp and np
phase shifts seems to be well established [19,20]. The
nonperturbative contribution of the Coulomb interaction,
particularly in Be, neglected here, may reduce the value
of this isotensor difference. There could also be some
contribution from charge dependence of the two-pion ex-
change V;,I, .

In conclusion, we have demonstrated that the GFMC
method can be used to accurately calculate the energies of
the many nuclear states with A ~ 6 from realistic models
of nuclear forces. The calculated energies are in good
agreement with experiment. However, some differences,

3
such as the underestimation of the splitting between 2

1
and 2 states of He are clearly established. We could
attempt to probe relativistic effects [21,22], and the spin-
isospin dependence of the short-range part of the V;,I,

using these differences. A detailed analysis of the GFMC
wave function e W is in progress to study the structure
of the 6N states and improve upon their W .
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