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Precision Calculation of the Next-to-Leading Order Energy-Energy Correlation Function
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The O(n, 2) contribution to the energy-energy correlation function (EEC) of e+e ~ hadrons is
calculated to high precision, and the results are shown to be larger than previously reported.
The consistency with the leading logarithm approximation and the accurate cancellation of infrared
singularities exhibited by the new calculation suggest that it is reliable. We offer evidence that the
source of the disagreement with previous results lies in the regulation of double singularities.
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where cr is the total cross section for e+e ~ hadrons, E„
and p„are the energy and momentum of particle n, and

E„„1is the center of mass energy of the system. The EEC
is free of collinear singularities, since all parallel momenta
are linearly summed [15].

After factoring out the trivial dependence on the total
cross section and sin g [12], the EEC has the following
perturbative expansion in the region 0 ( ~ ( m. ,
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The energy-energy correlation function (EEC) [1—4] for
e+ e annihilation into hadrons is widely used as a measure
of the strong coupling constant n, [5—7] and is potentially
one of the most precise and detailed experimental tests of
QCD available [7,8]. However, that potential has not been
realized due to disagreement over the predicted value of the
next-to-leading order correction in the strong coupling con-
stant [9—13]. We report on a new calculation of the O(n, )
term using subtraction for control of infrared singularities.
Accuracy was checked at every stage by symbolic compu-
tation, high precision arithmetic, and human calculation.
The detailed cancellation of singularities in the compli-
cated four-parton states was carefully tested. A more com-
plete description will be presented elsewhere [14].

The EEC was invented to take advantage of the
asymptotic freedom of QCD by viewing the products
of e+e annihilation with a weighting that favored the
most energetic hadrons [1,3,4]. Conservation of energy
requires all energy carried by quarks and gluons to
be transferred to detectable hadrons; hence the EEC is
experimentally and theoretically defined as

hadrons a,b

Here o-o is the leading order total cross section, p, is the
renormalization scale, and po is the leading coefficient

11 4of the p function: po =
3 C~ —

~ Tti. For QCD in this
4 1

notation, CF = 3, C~ = 3, and T~ =
2 NF, where NF

is the number of active quark flavors at energy E„„1.
Analytic calculation of A. yields [1]

A. (~) = CF(1 + co) (1 + 3to)

X [(2 —6to )ln(1 + to ') + 6' —3], (3)

where to = cot2(~/2). No such analytic expression is
possible for $(~). At O(n, ), the EEC receives contri-
butions from four-parton final states at tree level and from
three-parton final states with a virtual parton forming one
internal loop. The three-parton final states pose little chal-
lenge, but the integrals corresponding to four-parton states
with an external angle fixed at g demand numerical as
well as analytic calculation.

To calculate contributions near soft or collinear poles,
the four-parton expressions were simplified to allow an-
alytic integration in the presence of an infrared regula-
tor e (dimension D = 4 —2e). Using the subtraction
method of infrared regulation, the simplified expressions
were subtracted from exact expressions and the finite dif-
ference was numerically integrated without infrared regu-
lation (e = 0). Analytic integrals of the three-parton and
simplified four-parton expressions (at finite e) were then
added, and the sum was shown to remain finite in the limit
e ~ 0. As in all previous calculations of S, we used the
expressions derived by Ellis, Ross, and Terrano (ERT)
[16] for the exact three-parton and four-parton final states,
but we did not use the ERT simplifications or analytic in-
tegrals for reasons of maximizing numerical convergence.

Our results (Clay and Ellis or CE) are plotted in Fig. 1

along with the results previously reported by Richards,
Stirling, and Ellis (RSE) [10] and Kunszt and Nason
(KN) [12]. The mean relative numerical uncertainty in
our calculation is 0.3%, while for KN it is roughly 4%,
both arising from the precision of numerical integrations.
This uncertainty is insufficient to explain the roughly
15% overall difference between KN and CE. While it
is possible for systematic differences such as these to
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calculations is unknown. An independent calculation of
Sp would be very useful for resolving the disagreement.

To explore the source of the disagreement, we parame-
trize 8 as a sum of three functions,
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where rl
— =

2 [1 ~ cos(X)]. The coefficients 8, that
best fit our calculation were found using an unconstrained
least-squares fit and are displayed in Table I. For compar-
ison, we also show the coefficients derived by RSE [17]
who reported some inconsistency with the leading loga-
rithm approximation. No inconsistency is evident in our
data. The previously unpublished exact values for So+ are
based on our conjecture that the form factor for the EEC
is the same as that for the second energy moment of the
Drell-Yan cross section [18,19]. The form factor is con-
voluted with a known parton evolution function [20] to
produce So .

The discrepancy over the value of So is significant.
With NF =—4, RSE extracted a value of Bp equal to
29.9 ~ 2.9, while our calculation predicts a value of
47.8 ~ 0.8 (see Table I). Based on our preliminary anal-
ysis of data from KN as well as Glover and Sutton (GS)
[13], we conclude that neither is consistent with the val-
ues of Sp from either CE or RSE. It is unfortunate that
the coefficient that best discriminates between the various

Cos(x)
FIG. 1. The O(n, 2) contribution to the energy-energy correla-
tion function. For comparison we display our results (solid cir-
cles), the results of Kunszt and Nason [12] (open squares), and
the results of Richards, Stirling, and Ellis [10] (open circles).

5S values shown are for five active quark flavors or TR =
2 [see

Eq. (5)].

arise from purely numerical errors, we believe there is an
analytic error at the heart of the disagreement.

The only known test of the analytic behavior of S
is a comparison with the predictions of the leading
logarithm approximation for large and small angles [2].
To determine asymptotic behavior, $(X) was calculated
over the range Icos(X)I ~ (1 —10 6), and the results
were compared to an expansion of the form

+(X) CFI CF+CF(X) + CA+Cq(X) + TR+Tg(X)] ~ (5)

and compare our results for each function with those
of GS as well as RSE. While CE and GS [21] differ
significantly over B&„and even more so over 8&„, they
agree with each other and with RSE [10] on the value
of Sr, . It was also only for Sc, and Sc, that RSE
reported difficulty in the fit to leading logarithms [17].
This strongly suggests that the source of the disagreement
lies outside of the calculation of ST, and is most severely
manifest in that of Sc„.

We believe that the source of disagreement is the reg-
ulation of double (i.e. , soft and collinear) infrared singu-
larities. Calculation of BT, involves no such regulation,
since the four-fermion states have no soft singularities,
while unique to Sz, are "ladder diagram" contributions
that produce the double singularities least controlled by
energy weighting.

To deal with infrared singularities, the exact perturba-
tive integrands are simplified in such a way as to be ana-
lytically integrable in the presence of an infrared regulator
(e.g., 4 —2e dimensions) while producing integrated ex-
pressions that display the same singular dependence on
the regulator (e.g. , poles in e) as do integrals of the ex-
act integrands. The simplified integrands are also used in
numerical integrations where the regulator is necessarily
removed (e ~ 0) before integration. Any such algorithm
guarantees that the singular parts of the dependence on
the regulator will be correctly calculated.

We have found that simplifications of integrands in-
volving double poles can produce nonsingular [O(e )] er-
rors from the inexact treatment of O(1/e) shoulders of the
O(1/e ) double poles multiplying terms of O(e). Since
energy weighting can reposition these shoulders in a com-
plicated way, simplified EEC integrands may be especially
prone to such errors. These errors cannot be corrected in
any numerical integrals where e 0 prior to integration.
The subtraction method prescribes addition and subtraction
of the same quantity, but the added quantities are integrated
analytically while subtracted quantities must be integrated
numerically to cancel poles in the exact four-parton inte-
grands. Thus the added and subtracted quantities may dif-
fer due to necessarily different regulation methods for the
numerical and analytic integrals. In such cases, integra-
tion of the difference between simplified and exact inte-
grands is not uniformly convergent near double poles and
the integrals are finite only in the sense of a numerically
computed average. This average will generally not be the
correct result obtained by analytically setting e 0 after
completing integration rather than before.

As a test for these errors in our calculation, the
cancellation of double singularities was examined. Since
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TABLE I. The coefficients of the leading log expansion of the EEC at large (2I,+) and small (2I, ) angles. The expansion is as
shown in Eq. (4). Listed are the exact leading log coefficients and the coefficients producing the best fit to Clay and Ellis as well
as Richards, Stirling, and Ellis [17].

Coefficient

r8 +

/g +

$0

Exact value

—2 CF
9 CF+

3.67 Cg+
1 .333 Tg

—23.6 CF+
—1.34 Cg+
—0.222 TR

26.2 CF+
16.6 Cg+
—3.58 Tg

—3.125 CF+
3.567 Cg+
—0.8833 TR

Clay and Ellis

(—2.017 ~ 0.049) CF
(9.84 ~ 0.90) Cr+
(3.63 ~ 0.12) Cp+

(—1.333 ~ 0.001) Ts
(—20.6 ~ 4.79) CF+
(—1.53 ~ 2.11) Cg+
(—0.220 ~ 0.03) Tg
(23.1 ~ 5.89) Cr+
(13.43 ~ 9.00) Cg+
(—3.58 ~ 0.17) TR

(—3.15 ~ 0.04) CF+
(3.S7 ~ 0.01) Cg+

(—0.8832 ~ 0.0005) TR

(8.69 ~ 0.40) Cr+
(15.7 ~ 0.2) Cg+

(—5.46 + 0 005) TR

Richards, Stirling, and Ellis

(—2.46 + 0.29) Cr
(21.0 ~ 9.0) Cr+
(2.86 ~ 7.24) Cp+
(—1.35 ~ 0.05) Te

(—140 ~ 111) Cr+
(14.0 ~ 71.7) Cg+

(—0.066 ~ 0.480) Ts
(370 ~ 196) Cr+

(—56.8 ~ 228) Cp+
(—4.16 ~ 1.64) Ts

(6.51 ~ 0.35)
(exact = 6.S33)+

(—0.88 ~ 0.02) Tg
29.9 2.9
(XF —= 4)

analytic work is difficult for the four-parton states, we
have focused on tests of numerical convergence. The
scale of the independent variable controlling singulari-
ties was magnified by a factor of 104 in a search for
instabilities, and neighborhoods of double poles were
divided into separately integrated patches to isolate di-
vergences. While further study is required, neither test
produced signs of nonuniform convergence or error.

Ultimately, theory must be compared with experiment,
and fits of our calculation to data from SLD [7] have
been performed [22]. Using the procedure adopted in [7],
values for n, (Mz) were derived using the EEC as well as
the asymmetry of the EEC or AEEC:

AEEC(X) —= EEC(vr —X) —EEC(~) .

Renormalization scales used were in the range
0.0035(EEC) 8,
0.09(A EEC)

and while fits using KN and CE were found to have
similar p, dependence, EEC fits using the larger CE values
for 8 yield n, (Mz) values smaller by about 0.005 [22,23].
Although all 8 calculations yield larger ot, (Mz) values
from EEC fits than from AEEC fits [7], it is interesting to
note that the two differ by 0.012 for KN, as opposed to
only 0.006 for CE [7,22,23]:

n, lcE) (Mz) = 0.118 ~ 0.003(experiment)

~ 0.013(scale) ~ 0.002(hadronization),

cr, (cE) (Mz) = 0.112 4- 0.003(experiment)

~ 0.003(scale) ~ 0.002(hadronization) .

(6)
While the improved agreement does not constitute evi-
dence that our calculation is correct, it is an attractive and
suggestive feature of the results.

We conclude that the disagreement over the next-to-
leading order contribution to the EEC has not been re-
solved. Comparison of our calculation with all that is
known about the EEC shows it to be reasonable and numer-
ically reliable despite disagreement with previous calcula-
tions. A more intensive investigation of the cancellation
of double singularities combined with a possible extension
of our knowledge of the leading logarithm expansion is
needed to resolve the differences.
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