
VOLUME 74, NUMBER 22 PH YS ICAL REVIEW LETTERS 29 MAY 1995

Extraction of V„b from the Decay B ml v

Hsiang-nan Li' and Hoi-Lai Yu
'Department of Physics, National Chung Che-ng University, Chia Yi, -Taiwan, Republic of China

Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
(Received 26 July 1994)

We develop the perturbative QCD formalism for semileptonic B meson decays, which includes
Sudakov suppression on the spatial extent of a heavy meson containing a light valence quark. We
show that the perturbative calculation for the spectrum of the decay B vrlv is reliable for the energy
fraction of the pion above 0.3. Combining predictions from soft pion theorems, we obtain an upper
limit of the matrix element ~V„b~ of roughly 3.5 && 10 '.

PACS numbers: 13.20.He, 12.15.Hh, 12.38.Bx

Exclusive semileptonic meson decays, which provide
information of the mixing angles in the Cabibbo-
Kobayashi-Maskawa matrix of the standard model, have
been studied intensively. For the heavy-to-light transi-
tion B ~lv, which gives a reliable estimation of the
matrix element ~V„b~ [1], there are not yet appropriate
theories. The well-known chiral symmetry [2] and heavy
quark symmetry [3] cannot be applied to this process.
Recently, a perturbative QCD (PQCD) analysis of the
decay B m l v, including Sudakov effects, has been
proposed [4], which makes possible the direct extraction
of

~ V„b ~. However, it leads to results which are too small
compared to current experimental data. The smallness is
due to the subtraction of an on-shell virtual heavy quark
propagator from the hard scattering subdiagram, in which
all the particles are supposed to be far off shell.

In this Letter we shall develop a modified PQCD
approach to heavy meson decays, which also includes
Sudakov effects that are formulated in a different (trans-
verse) direction [5,6]. We associate transverse momen-
tum kT with the valence quarks in the B meson, which
was not considered in Ref. [4], and derive the Sudakov
factor describing the evolution of the B meson wave func-
tion in kT. We emphasize that we shaH perform a new
resummation of large radiative corrections to the system
containing both heavy and light valence quarks, which
is different from all the previous studies of Sudakov re-
summation that have concerned only light hadrons. The
Sudakov factor suppresses long-distance contribution and
has extended to the applicability of PQCD down to the
few GeV scale in the study of elastic hadron form factors
[6]. With k&, the virtual heavy quark in the hard scatter-
ing is always off shell and needs not to be subtracted. Our
predictions for the differential decay rate then turn out to
be larger than those in Ref. [4] by about three orders of
magnitude. We shall show that our PQCD approach is
proper for the decay B ~ mlv, at least when the pion is
energetic, and gives predictions comparable to those from
soft pion theorems and to experimental data.

The amplitude of the considered process is written as

GF
A(Pi P2) V b uy' (I —ys)1(tr(P2) Iuy b IB(Pi)),

2
(I)

where GF is the Fermi coupling constant and P~ and P2
are the B meson and pion momenta, respectively. We
start with the lowest-order factorization for the matrix
element M" = (~(P2) ~uy" b~8(P~)), in which the b quark
carries the momentum Pi —k&, and its light partner
carries k&. These momenta satisfy the on-shell conditions
(Pi —ki) = mb, Pi =

ming, and kt = 0, mb and ms being2 2 2 2

the b quark and B meson masses, respectively. We
choose the Breit frame such that P~+ = P, = ms/~2,
P2 = rlmti/~2 and all other components of P s vanish,
where p is related to the energy fraction of the pion by
P2 = timid/2, 0 ~ tl ~ 1. k~ has a minus component,
defining the momentum fraction x~ = k& /P~ in the
B meson wave function, and a small amount of transverse
components k~T. The light valence quark of the B meson,
after absorbing the hard gluon, goes into the pion with the
momentum fraction x2 and transverse momenta k2T.

We then consider how to group radiative corrections
into the basic factorization by locating their leading
momentum regions, from which important contributions
to loop integrals arise. The important corrections are
characterized by large single logarithms of the form
In(mt'/kr), which are either collinear or soft. These
two regions may overlap and give double logarithms. It
is known that single logarithms can be summed to aH

orders using renormalization group (RG) methods, while
double logarithms must be organized by the resummation
technique [7], which has been developed in axial gauge
n.A = 0 for the light hadron case, n being the gauge
vector and A the gauge field.

A careful analysis shows that reducible corrections on
the pion side produce double logarithms with soft ones
canceled in the asymptotic region b ~ 0 [6], b being
the conjugate variable to kT. - Hence, they are dominated
by collinear enhancements and can be absorbed into
the pion wave function, giving its evolution described
by the Sudakov factor. Reducible corrections on the
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x H" (x), x2, b ), b2, m, p, )

x 2s(x~, b~, P), p, ), (2)
with P and 2~ the pion and B meson wave functions,
respectively, and H & the Fourier transform of the hard
scattering amplitude to b space. p, is the factorization
and renormalization scale. Both P and P~ contain
double logarithms, which will be summed up below.
The approximation mg = m~ = I = 5.28 GeV has been
made to simplify the analysis.

We outline the resummation procedure employed for
[5,6]. If the double logarithms are grouped into

an exponential P —exp[ —lnm ln(lnm/lnb)], the prob-
lem will become simpler by considering the derivative
d2'/d lnm = CP, where the coefficient C contains only
single logarithms and can be treated by RG methods. Be-
cause of the scale invariance of n in the gluon propagator,

—i, n" q' + q~n' 2 q~q' l
+

q
2 (n q)') '

n q

(3)
depends only on the ratio v2 = (Pq n) /n . It is

then possible to relate the derivative O'P /d lnP2+ to
d2 /dn, which can be easily computed using the rela-
tions dN"'/dn = (N~ q" + N" —q")/q n The mo-.
mentum q appearing at both ends of the differentiated
gluon line hints at the application of the Ward identity.
After adding together all the diagrams with different dif-
ferentiated gluon lines, we obtain an equation graphically
described by Fig. 1(a), in which the square vertex repre-
sents gT'n~Pz /(P2 n q n), T' being related to the Gell-
Mann matrices A' by T' = A'/2.

Because of the factor 1/q n in the new vertex and the
nonvanishing of n, the leading regions of q are soft and
ultraviolet, in which Fig. 1(a) can be factorized according
to Fig. 1(b) to lowest order of n, The part .on the left-
hand side of the dashed line is exactly P, and that on
the right-hand side is assigned to the coefficient C. We

8 meson side also give double logarithms, but the soft
ones do not cancel and the collinear ones are suppressed
by the B meson wave function. These corrections can
be absorbed into the B meson wave function, which is
also dominated by soft dynamics. The resummation of
large corrections to such a heavy-light system is our
main concern below. Irreducible corrections, with an
extra gluon connecting the pion and the 8 meson, give
only soft divergences, which cancel asymptotically. They
are then absorbed into the hard scattering amplitude.
Another type of irreducible correction with the extra gluon
attaching to the hard gluon, which was considered in
Ref. [4] and summed into the Sudakov factor describing
the evolution in k~, is in fact not important as argued
in Ref. [8]. Hence, the factorization picture holds after
radiative corrections are included.

The factorization formula for M& is then written as

d b] d b2
M = dx( dx2 2 2 2~(x2, b2, P2, p)

0 277 2 2% 2

dlnPz (i

(a)

l l'
,~

EiI

(b)

FIG. 1. Graphic representation of Eq. (4).

s($, b2, rIm)
$=X2, 1 X2

+vr (x2 ~ b 2 9 p ) ~ (5)

2 (x2, b2, P2, p, ) = exp

The explicit expression of the exponent s($, b, Q) has
been obtained in Ref. [6] and will not be shown here due
to its complexity.

The function P still contains single logarithms from
ultraviolet divergences, which need to be summed using
RG methods [5]. The large-b behavior of 2 is then
written as

exp — P s($, b2, rIm) —2
$=X2, 1 X2

X @ (x, , 1/b, ),

dp, r, [g(p)]
/~2 P

(6)

n, /7r being the—quark anomalous dimension in
axial gauge. The argument 1/b2 in the initial condition

of the RG equation indicates that the scale p, in the
wave function has evolved to this lower scale.

As to P~, the resummation of the double logarithms
is subtler. The self-energy correction to the massive
b quark, giving only soft single logarithms, should be
excluded. On the other hand, P~ involves the invariants
such as P], which cannot be related to n, so that the
technique of replacing d/dm by d/dn fails. However, the
above difficulties can be removed by applying the eikonal
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introduce a function 3C to organize the soft enhancements
in the first two diagrams of Fig. 1(b) and g for the
ultraviolet divergences in the other two diagrams. The
soft subtraction in g is to avoid double counting. We
then derive the differential equation,

d 1

~ 2~ = t23C(b2p) + 2 g(x2v2/p)
d lnP2+

+ 6 [(I x2) v2/p ])&, (4)

where the functions 9C and g have been calculated using
RG methods [5]. Solving Eq. (4), we obtain the solution
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approximation to the heavy quark line. In the collinear
region with the loop momentum q parallel to k~ and in the
soft region, the b quark line can be replaced by an eikonal
line:

9'l —ll + 4 + m)v (Pl —kl) + R, (7)
(P) —k) + q)' —m' (Pl —kl). q

where the remaining part R is less important. The
involved physics is that a soft gluon or a gluon moving
parallel to k& cannot explore the details of the b quark,
and its dynamics can be factorized.

The first difficulty is then resolved, because self-energy
diagrams of an eikonal line are excluded by definition [9].
With the scale invariance of P~ —kl as shown in Eq. (7),
which is equivalent to the flavor symmetry in heavy quark
effective theory, P~ —k] does not lead to a large scale,
and the remaining large scale is only k& . Furthermore, an
explicit lowest-order investigation shows that P~ depends
only on the single ratio vl = (kl.n)2/n2 [8], and thus
d/dk& can be replaced by d/dn now.

Following the similar procedures to those for the pion,
we obtain the differential equation

d 1

d ink(
2'll = [3C(blP) + 2 g(l l/P, )]2P. (8)

It can be shown that the functions 3C and g for the
B meson are exactly the same as those in Eq. (4) [8). It
is then straightforward to derive the solution

Pll ——exp —s(xl, b), m) —2

X @ll(xl, 1/bl) .

dp,
Vq[a(I )]

/bl P

The evolution of the functions @ and peal in 1/b will be
neglected below. At last, the RG analysis of H& gives

H~(x;, b, , m, p) = exp —4 dp
vq[g(r)]

p
X H~ (x;, b;, m, t), (10)

where t is taken as the largest mass scale associated with
the hard gluon, t = max(gx~x2ll m, 1/b&, 1/b2). Having
factorized all the large logarithms into the exponents, we
can then compute H" to O(n, ).

Substituting Eqs. (6), (9), and (10) into Eq. (2), we
obtain the factorization formula for M" = f)P) + f2P2,
where the form factors f~ and f2 are given by

fl = 167rCFm-dx& dxp bl dbms b2 db2 ply(xl, bl)p (x2)xl Tih(x2, xl, b2, bl, m) exp[ —S(x;, b, , m)]

and

f2 = 162r CF m

respectively, with

dxi dx2 bl dbms b2 db2 @tl(xl, bl)@~(x2) [(1 + x271)h(xl, x2, b), b2, m)

—xlh(x2, xl, b2, bl, m)] exp[ —S(x, , b;, m)], (12)

h(xl, x2, bl, b2, m) = a, (t)Kp(gxlx2g mbl) [0(bl —b2)Kp(gx2g mb))Ip(gx2q mb2) + 0(b2 —bl)
x Kp(gx2Tt mb2)lp(gx2ll mba)]. (13)

4
CF =

3 is the color factor, and Kp and Ip are the
modified Bessel functions of order zero. The function
h is the Fourier transform of one of the hard scattering
subdiagrams, whose contribution is written as

xl x2 g m + (k &T k2T) x2 7J m2 + k2T
Note that the second factor, coming from the virtual
b quark propagator, does not involve singularity as x2 ~
0 due to the existence of k2T.

The complete Sudakov exponent S is given by

S(x;, b;, m) = s(xl, b), m) + s(x2, b2, gm)

+ s(1 —x2, b2, qm)

1 ln(t/A) ln(t/A)

p ln(1/b l A) ln(1/b2A)

(15)
with p = (33 —2nf)/12, nI = 4 being the number of
quark flavors, and A —= A~cD = 100 MeV here. The
Sudakov factor exp( —S) decreases quickly in the large b;
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~WX(1 —x)'
X m' + C(1 —x)

'

with W = 1.232 GeV and C = —0.99993m, satisfying
the normalization f dx p& = fB/2 /3, fly = 160 MeV be-
ing the B meson decay constant [12].

Results of f~ + f2 with b, and b2 integrated up to
the same cutoff b, are shown in Fig. 2(a). We observe
that at g = 0.3 approximately 50% of the contribution
to fl + f2 comes from the region with n, (1/b, ) ( 1

(n, /~ ( 0.32), or equivalently, b, ( 0.5/A. At g = 0.4,
55% of the contribution is accumulated in this perturba-
tive region. As g = 1, the perturbative contribution has

(16)

region and vanishes as b; ) 1/A. This behavior ensures
that the main contribution to f; is due to small b;, for
which n, is small, no matter what x s are.

so chosen as the Chernyak-Zhitnitsky model [10],
(x) = 5~3f x(1 —x) (1 —2x)2 with f„=93 MeV

the pion decay constant. For the B meson wave function
we consider [4,11]
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and the product fthm g» suffers a large uncertainty, the
agreement of our calculation, which does not involve any
phenomenological parameter, with nonperturbative results
to order of magnitude is not trivial.

It is then possible to estimate the total decay
rate I by combining Eq. (18) for ri ( 0.3 with the
PQCD predictions for ri ) 0.3. We obtain I = 1.3 X
10 "IV„bI GeV, which corresponds to a branching ratio
26IV„bI for the total width (0.51 0.02) X 10 MeV
of the Bp meson [16]. The current experimental limit on
the branching ratio of Bp ~ 7r l+v is 3.3 X 10 4 [17].
We then extract the matrix element IV„bI ( 3.5 x 10 ',
close to the value 0.003 given in the literature [16].
In fact, IV„bI can be extracted directly by comparing
our perturbative predictions with the spectrum of the
decay B ~lv, once it is available. On the other hand,
our work provides a nontrivial test of PQCD in decay
processes involving heavy mesons.
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Yao for helpful discussions. This work was supported by
the National Science Council of the Republic of China un-
der Grants No. NSC84-2112-M194-006 and No. NSC84-
211-M001-034.

FIG. 2. (a) Dependence of f~ + f& on the cutoff b, for
(I) il = 0.3, (2) il = 0.4, and (3) il = 1.0. (b) Dependence of
R(rl) on tl derived from the modified PQCD formalism (solid
line) and from the soft pion theorems (dashed line).

reached 70%. It implies that the modified PQCD analysis
of the decay B ~lv in the range of q ~ 0.3 is rela-
tively reliable according to the criteria given in Ref. [6].
We emphasize that contributions satisfying these criteria
are not completely perturbative, but perturbation theory
indeed makes sense in the above region with q ) 0.3.
The differential decay rate for the specific case B

l+ v with vanishing lepton masses is given by

dr GI; m'
V R = V + 17

2 5 2 2 3GFm fthm gtiti*~-'r/

limRjgj =
p 192m3f2 (1 —r + rri)2 ' (18)

which shows an approximate linear relation with
Here r = m&/mtt =0.98, fthm*

.= I lfti [14] is the . decay
constant of the B' meson, and giiit- = 0.75 [15] is the
BB"n. coupling constant. We extrapolate Eq. (18) to
rl = 0.3 as shown in Fig. 2(b), and a fair match between
the soft pion and PQCD predictions is observed. Though
this extrapolation of the soft pion limit may not be reliable

I .bl (g) I .bl, If 1 f21 ( )d 77 768~3

Substituting the result of f; into Eq. (17), we derive the
behavior of R(rl) as in Fig. 2(b), which shows a slow
decrease with g.

In order to have the full spectrum in g, we approximate
dI /dpi in the range of rl ( 0.3 by the soft pion limits of
f; [13]:
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