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Radiative Renormalizations for Excitonic Molecules
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The inliuence of the polariton effects on the internal structure of an excitonic molecule (xx) is

examined by the solution of the new xx Schrodinger equation which includes the polariton effects
self-consistently. In 3D (CuC1) the radiative renormalizations yield a nonparabolic xx dispersion with

infinite effective xx mass at zero momentum; in quasi-2D (GaAs) they give rise to a "Mexican hat"
structure in the xx dispersion at small momenta together with a considerable increase of both the xx
binding energy e and the inverse xx radiative lifetime I . In quasi-1D the inAuence of the polariton
effects is so strong that the xx exists only as a broad resonance (e" —I "').

PACS numbers: 71.35.+z, 71.36.+c

Radiative corrections are well known in atomic physics
due to the Lamb shift [1]. This shift of a transition fre-

quency of an atom in the photon vacuum is due to sponta-
neous emission. It can be calculated within perturbation
theory. We report here radiative renormalizations for an
excitonic molecule in direct-gap semiconductors. These
renormalizations originate from the polariton effect and
cannot be included perturbationally. They give rise to the
significant observable modifications of the xx dispersion
for all dimensions: D = 3 (bulk semiconductors), D = 2
[quasi-2D quantum wells (QWL)] and D = 1 [quasi-1D
quantum wires (QWR)].

Novel high-precision techniques with a spectral resolu-
tion ~10 p, eV have been applied to reinvestigate an xx
in bulk CuC1 [2]. Recently, the xx has been observed
also in QWL [3,4]. The xx ground state has been cal-
culated variationally within the underlying electron-hole
(e-h) picture for 3D [5], 2D [6], and 1D [7] cases, re-

spectively. The exact interparticle Coulomb potentials
have been included, while the polariton effects have been
neglected completely. The xx radiative decay is then
treated perturbationally as a direct optical conversion
xx ~ exciton (x) + photon (y) with a giant oscillator
strength [8]. The strong interaction with the electromag-
netic field will, however, also modify the xx dispersion
and give rise to an xx Lamb shift 5

The e-h picture can be reduced to the x representation
(see, e.g. , [9,10]), if the x binding energy e' is much
larger than that of molecule e . This approximation
holds, e.g. , for bulk CuC1 (e' = 190 meV and e" =
34 meV) and for GaAs QWL (e' = 10 meV and e" =
I —2 meV). If one neglects the interaction with the light
field, the xx eigenfunction 'Itp(p, K) and ground state
energy A& are obtained from its Schrodinger equation
in momentum representation (with h = 1):

g co'(op + K/2)8pp + W„(p —p') Wp(p', K)
p t

= O, t'Wp(p, K) . (1)

Here, p and K are the momenta of the relative and
center-of-mass motion of the xx, respectively; co'(p) =
to, + p2/2M, is the x kinetic energy, co, is the trans-
verse x frequency, M is the x translational mass; W„(p)
is the attractive potential between two singlet x's with

opposite e(h) spin orientation. The attractive potential
which follows from the e(h)-e(h) Coulomb interactions
includes both the direct and the exchange contributions.
Although W„ is known explicitly [9,10], it is often re-
placed by simpler model potentials such as the deuteron
or the harmonic oscillator potential [2,9]. Because of the
quadratic x dispersion the center-of-mass motion splits
off in Eq. (1), i.e. , 'Irp(p, K') = 8(K —K')'Itp(p). The
wave function of the relative motion Wp(p) and the cor-
responding xx binding energy ep' = 2', + K /2M„—

are independent of K. Here M = 2M is the xx
translational mass.

In Ref. [10] we have shown that the polariton effects
can be included self-consistently in the description of the
xx in direct-gap semiconductors by the following wave
equation:

y to""(o.p + K/2)B + W„(p, p', K) +(p', K)
pt

=—A~'9" (p, K), (2)

with to i'"(p) = co (p), where co —(p) is the dis-
persion of the upper (+) and lower ( —) polariton
branch, respectively, which are given by the roots of
(top ) = c p /ep = to + Az to /(ai& + Cot p /Mx to ).
Here, cup is the y dispersion, eo is the back-
ground optical dielectric constant, II, = $2co~, co„
where cu l, is the longitudinal-transverse split-
ting. The effective potential 6" is determined

by the x components of the two interacting po-
laritons: W, (p, p', K) = f(p, K)W„(p —p'), where

f(p, K) = P cp (o.p + K/2, to (trp + K/2)), and
p=(p, ~) = ~=(p)(~ —~,')/~[~=(p) —~=(p)]. For
the description of the "ground state" of the decaying xx,
only the lower polariton dispersion branch has been taken
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into account in Eq. (2). This equation contains simul-
taneously the x-x attraction as well as the x-y polariton
coupling. The x-weight functions p-(p, cu) satisfy the
conditions q+(p, cu (p)) ~ 0, p (p, ~ (p)) ~ 0,
q+(p, co+(p)) + p (p, cu (p)) = 1.

Equation (2) shows that the name "bipolariton" would
be more appropriate for an xx than "biexciton. " The
most important consequence of Eq. (2) is that the xx
is no longer a stable state as in Eq. (1). The linear
integral Eq. (2) describes both the radiative decay of a
xx state and the renormalization of the xx energy due
to polariton effects. Because of f(p, K) Eq. (2) cannot
be transformed easily to real space. Equation (2) reduces
to the xx Schrodinger equation (1), if both momenta p
and p' are outside of the optical range (p, p' » k, i, &

=
co, ~so/c). The xx radiative decay is described here as
a continuous evolution of the xx internal state rather
than a discrete optical conversion act to x + y. When
an x in the xx acquires a small momentum within the
optical range (p ~ k,„,), the xx undergoes a radiative
annihilation. For the unperturbed x of Eq. (1), the optical
range in momentum space corresponds to the x turning
points in real space where the x group velocity vanishes:
&gl„-o = ~~ /Bp ~ 0. In the polariton representation
the x relative motion in real space is rather different. With
increasing x distance and decreasing the momentum p, the

group velocity increases vg ~„o = &~~"/&p &/~&o.
Instead of returning, the x's start to leave each other; the
radiative decay of the xx sets in.

The quasistationary solution %"(p, K) of Eq. (2) rep-
resents an outgoing spherical wave due to the radia-
tive decay of the xx state with Af = Af + b, '(K)—
iI' (K)/2 Here, 0. &' = A&'=o + IC /2M is the unper-
turbed xx energy. For the small relative momenta of the
optical range, W(p, K) is so strongly modified that it can-
not be calculated by perturbation theory.

Instead we decompose the xx wave function into

4'(p, K) = Wo(p) + 6 P(p, K),

dD p/
6'P(p', K)

27r D

= —Z(p, K)e,(q), (4)

BA(p, K)BW(p, K) —W„(p)f(p, K)

where

BA(p, K) = A~ — g cu (o.p + K/2)

is the energy difference between the bipolariton and the
two separate polaritons. Furthermore,

where Wo(p) is the known solution of the xx Eq. (1),
while 6'W(p, K) describes the outgoing part. The latter
term is large only in the optical range, i.e., for p ~ k p$ ((
a ', where a is the xx radius. For these small mo-
menta one can approximate +~i W, (p, p', K)& p(p', K)
by W, (p, o, K) p 8%"(p', K), which yields

E(p, K) = BQ(p, K) + (eo" + p'/M, )f(p, K) . (6)

where

C = C(A") = W/(2~) (1 + a), (8)

where A = g~[E(p, K)/BA, (p, K)]'Po(p), and B = —g~
[W, (p)/BA(p, K)]f(p, K). According to Eq. (7), the
roots po = po(K) of BA(p, K) = 0 give rise to singu-
larities in 6%(p, K) and W(p, K). These singularities
describe the two outgoing polariton waves with po +
K/2 and —po + K/2. However, the functions 9"o(p),
8"P(p, K), and W(p, K) as well as the initial Eq. (2) are
symmetric with respect to the substitution p —p. As
a result, the functions BW(p, K) and 4'(p, K) can be de-
composed into outgoing and incoming parts with equal
contributions, e.g. , 9" = %'z"', &j2 'P&, zj2. Thus the
wave function includes not only the true outgoing part,
but also the "unphysical" incoming component. More-
over, the residues of the roots of BA '(p, K) = 0 which
correspond to the incoming waves and lie on the un-
physical sheet of the complex p plane contribute to
the integrals of Eq. (8). In order to avoid this diffi-
culty, one can work only on the physical sheet [11]
by treating the complex conjugate of Eq. (2). In this
case A~' ~ [A~']*, 'Ij'(p, K) ~ 'P(p, K)" = 9'ii+;rg2 +
0'r'i+, r&z, where 'Pti"', r&2

= ['Pr'i+;r~2]*. In this way we
treat the conjugate problem of resonant xx creation out
of two polaritons instead of the xx optical decay. This
procedure also avoids the task to normalize the outgoing
wave function W&"', &~2.

In order to satisfy the boundary conditions, the polari-
ton correction 6%(p, K) has to vanish outside of the op-
tical range, i.e., for p » k,~, . From this requirement the
complex energy eigenvalue 0,& will be calculated. With
a model potential which satisfies the relation W, (p) =
p+o(p), where p is a negative constant, 6%" vanishes in-
deed outside the optical range, provided that

(IIXX)+ +XX +XX + 'I XX/2, pg*(+XX)

The transcendent Eqs. (8) and (9) determine self-
consistently both the radiative width I and the xx Lamb
shift 5 . Because the polariton dispersion does not
allow to split off the center-off-mass motion in Eq. (2),
the total xx momentum K infiuences the relative motion
of the x's. Thus 6%', 5, and I are K dependent.

For the numerical evaluations of Eqs. (8) and (9)
the deuteron potential W„(p) = Wo /(p + 1)
has been used. As usual, the deuteron wave function
for Eq. (1) is calculated variationally with the ansatz

Equation (4) is a Fredholm integral equation with sepa-
rable kernel. The corresponding solution is given by

E(p, K)+o(p) + CW, (p)f(p, K)
BA(p, K)
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(p) = Slo /(pz + n2), where S o is the
normalization constant and n the variational parameter.
We use dimensionless units scaled with the 3D xx
Rydberg and the 3D xx radius. The energy minimum

is reached with rx = f(WO ). In order to satisfy the(D)

assumed proportionality between W, (p) and ql'o(p)
we invert the result of the variation calculation and

put n = 1, i.e., Wo = f '(n = I). By means of this(&)

procedure the following values are found Wp = 18.0,
(])

Wo = 27vr/2—, and Wo = 54vr—, respectively. With(2) (~)

~~,(i)
these values one gets further 5 ' = 2.0, ep

' = 5.0;
S ) =2Q27r, eo' =2.0;S =Sf%i, Eo =1.0. In
comparison with experiments we use the unperturbed xx

xx, (D)
binding energy ep

' as input parameter. While this
procedure treats the x-x interaction in a simplified way, it
treats the polariton effects exactly.

The fraction of the phase space in which the polariton
effects dominate over the Coulombic x-x interaction is
roughly of the order of ~, where K = k pta (& 1.
Therefore, the influence of the polariton effects on the
xx internal state increases drastically if one reduces the
dimensionality from D = 3 to D = 1. We start with 2D,
because this case contains all the features in the most
explicit form.

(2&) Quasi 2D GaAs -QWI. .—The quasi-2D xx
is supposed to originate from the two Y-mode
surface polaritons which are transverse with p in-

plane and A2 = R,v'p —cu so/c [12]. In Fig. 1

the calculated xx energy AA& = 0&' —2', =
—eo' + b,"(K) + K /2M, (solid line), the unperturbed
energy AAz' = —eo' + K /2M, (dashed line), and the
radiative half-width I "(K)/2 (dash-dotted line) are plot-

ted versus K. The following parameters have been used:
m, = 1:592 eV, R, = 30.7 X 10 eV A, M = 0.44mp,
eo = 12.9, eo' = 2 meV, and a„= 131.6 A. The most
interesting feature of the renormalized xx dispersion 0&
is the "Mexican hat" structure at K = 0. The strong
spatial dispersion of 5"(K) is shown in the inset of
Fig. 1. The radiative renormalization results in a negative
effective xx mass M;f' at K = 0 (M;,'f = —0.007mo
for Fig. 1). In order to explain this result, one has to
examine the joint density of polariton states (JDPS)
given by the function BA(p, K), i.e., by the denomi-
nators of the integrands of Eq. (7). For I"~ 0 the
point Ko (see Fig. 1) is a critical saddle point of the
JDPS for which BBA(p, K)/Bp; = 0 with i = x, y (see
Fig. 2). This critical point corresponds to the degenerate
two-polariton (with p = Ko/2) xx absorption. In 2D
it gives rise to a logarithmic van Hove singularity [13]
in the JDPS. The critical points lie on a circle with the
radius Kp = 6.03 X 10 cm '. For K ( Kp the solu-
tions of 60(p, K) = 0 lie on a topologically connected
contour; for K ) Kp they are located on topologically
disconnected contours. The critical saddle point Kp is a
touching marginal point (see Fig. 2). In the vicinity of
Kp the xx couples effectively to surface electromagnetic
field resulting in a strong decrease of the xx energy
together with a sharp increase of I "(K) around Ko. The
minimum of the xx dispersion at K;„=4.9 X 10 cm
is shifted from Kp to a smaller value partly because of the
competition between the positive kinetic energy K /2M„
and the negative Lamb shift 6"(K).

The Mexican hat structure around K = 0 results in a
considerable enhancement of the effective xx binding en-

ergy for E values of the optical range. Starting with
eo" = 2 meV (the upper limit of the unperturbed xx bind-

ing energy in GaAs QWL according to the variational
calculations [6]) one gets Az' —2', = —3.27 meV for
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FIG. l. Quasi-2D GaAs QWL: Renormalized (solid line) and
unperturbed (dashed line) xx dispersions together with xx
radiative half-width I""(K)/2 (dash-dotted line). Inset: xx
Lamb shift 5 versus momentum K.
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FIG. 2. Graphic solution of the energy-momentum conserva-
tion AII(p, K) = 0 of the xx optical decay (resonant creation)
into two polaritons for K = Ko.
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FIG. 3. Bulk CuC1: Renormalized (solid line) and unper-
turbed (dashed line) xx dispersions, and radiative half-width
1' (IC)/2 (dash-dotted line). Inset: magnified region around
K = 0. The unperturbed dispersion K2/2M, is shifted for di-
rect comparison with xx renormalized energy AA&.

K = K;„. The latest optical experiments [4] indicate
e = 2.7 meV in contradiction to the previous observa-
tions [3] (e" = 1 meV) and cannot be explained without
xx radiative renormalizations.

(3D) Bulk CuCl. —In Fig. 3 the corresponding 3D re-
sults are shown for the CuCl parameters: ~, = 3.203 eV,
cu~, = 57 meV, M = 26mo, eo = 56, eo = 34 meV.
These values give II, = 191.1 meV and a„= 9.3 A.
Two important features can be distinguished.

(i) Strotlg renormalization of the xx dispersion around
K = 0 (K ~ K, = 1.5 X 105 cm '). This range is shown
in detail as the inset of Fig. 3. There is a very shallow
minimum in the xx dispersion at K;„=0.8 X 10 cm
with the depth of about 0.01 p, eV (in 3D K space the
minimum lies on a sphere with the radius K;„). This value
is considerably smaller than the corresponding I '(K;„).
Thus, one obtains a nearly "horizontal" xx dispersion with
M' ~ oo for E ~ E, . This xx dispersion will strongly
oppose a possible xx Bose-Einstein condensation in K =
0, which has been searched for in the last two decades [14].

(ii) For K ~ K, the xx Lamb shift results in an effective
renormalization of the "bare" xx mass M . For this
range we estimate M' = 2.15M . Such a modification
of M has indeed been observed experimentally [15]
(M;fr = 2.3M ) and has not been understood up to now.
The K dependence of I" (K)/2 is in good agreement with
the recent measurements [2]. For bulk CuCI, the van
Hove feature at Ko = 8.85 X 10 cm ' is classified as the
52 critical point (saddle point of second type in notations
of [13]), its influence on b, (K) is considerably weaker
than in 2D.

(1D) Quasi 1D GaAs -QWR. —For 1D the influence of
the polariton effects on a xx state is most pronounced.

For eo & 30 meV the numerical estimates give posi-
tive b, ' (K) ) eo', so that no xx bound state exists be-
cause AA~ = A~ —2', ~ 0. For unperturbed eo
30 meV, we receive a xx bound state with 6"(K) ( 0
and a camel-back structure at K = 0. However, the very
large I'"(K) —AA&' shows that the xx bound state exists
only as a broad resonance. In 1D the x inside a xx can-
not make a complete oscillation because it cannot traverse
the bottleneck region of the lower polariton branch. The
x motion can also not involve the upper polariton branch,
because 0, » eo . As a result, the xx decays optically
very quickly, before a complete oscillation period I/eo'.
For 1D we have to conclude the absence of a well-defined
xx bound state. The inhuence of the polariton effects is
so strong that A, K —eo . This result may explain why
an xx in quasi-1D GaAs QWR has not been observed, al-
though the variational calculations for Eq. (1) give a very
large value eo' ~ 40 meV [7].
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