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Vectorial Interactions and Quantum Chaos
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Vectorial interactions (e.g., QED) introduce the possibility of chaos into new, nonperturbative Green’s
function representations of potential theory. The full, radiative corrections of quantum field theory,
however, remove such chaos in an explicit example of “environment-induced decoherence.”

PACS numbers: 11.10.—z, 05.45.4+b

Causal, relativistic Green’s functions G.(x,y | A) for the
propagation of a particle of mass m in a specified field,
or potential, A(z), are used in many branches of physics
and have two basic features: they may be written in terms
of a proper-time integral [, ds, which acts, in part, to
specify the causal nature of the function; and they contain
integrals [ d*z over all space-time coordinates Zu, Which
provide energy-momentum conservation at every potential
interaction:

Gc(x,ylA)=if0 dse*fsmzfd4z<x|f(s,z)|y>. %)

Theories with scalar interactions require a Green’s func-
tion which satisfies

[m* — 07 + gA(N)]G.(x,y |A) = 8*(x — y)

and have an exact Fradkin representation which may be
conveniently written in momentum space in the form
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Here >, and []y correspond to the summation and
product over terms specified by all positive, odd integers

Ry(s") =

N =1,3,5,.... Equation (2) is an exact variant of
Fradkin’s functional representation [1] for G.[A], in
which all quantum fluctuations [all terms of /(s’) — z are
O(hi/mc)] appear in the argument of a linear dependence
on A.

Representation (2) is a fairly new result [2], which sug-
gests a new, nonperturbative approach to such Green’s
functions by the simple expedient of limiting the quadra-
tures associated with different N values to a finite few.
(It should be noted that when any of the N-dependent
fluctuations of Ry are neglected, the corresponding nor-
malization integrals of Eq. (2) generate a factor of +1.)
For such finite-N quadrature approximations, one has, in
advance, a qualitative estimate of relative errors; and as
shown in Ref. [2] by comparison with a soluble, nontrivial
example, such estimates of relative error may be thought of
as upper bounds. The existence of such a tractable, non-
perturbative approach to G.[A] is the reason why Eq. (2)
can be of considerable interest in a variety of fields.

When vectorial interactions are considered, for
example, QED or QCD, a new feature appears [3] in
these nonperturbative representations: the possibility of
chaos. For simplicity, we here state the resulting Green’s
function for a spinless boson field interacting with a
Maxwell field, according to the relation

{mz - > — gA(x)]2}Gc(x,y [A) = 8%(x — ).
14

Using techniques identical to those of Ref. [3], one
constructs the representation [Eq. (1)] with the second line

of Eq. (2) replaced by
|

.’J\f’f d[d:]f d[Q]exp[—i/O ds'[py — QNP + ij;) ds’d),L(s')I:Q#(s') - gAM<§(s’) — 2]; Q)}}, 3)

where N/ is a normalization factor which disappears upon performing the functional integration [d[¢]. The reason
for this complication, relative to the scalar case, is that each component of A,, must be allowed to transfer 4-momentum
to the first quantized particle m in a well defined but nontrivial way. The result of the [ d[¢]is then to produce a delta
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functional 8[Q,(s") — gAL({(s) — 2 fgl Q)] at each point with possibly disastrous effects for the needed Q,(s') if
0 = s’ = s, which then allows the [ d[Q] to be performed the map [Eq. (4)] leads to chaotic behavior. [Chaotic

immediately, such that Eq. (3) is replaced by behavior becomes even more probable if the higher fre-
5! - quency s’ dependence of the (Py, Q) is retained.] Thus,
exp| —i fo ds'[py — Qu(s"))* — Trin[6f/6Q] |, these exact vectorial interactions Green’s functions of first

here the f ion O, (s") i catisfy the “ . quantization contain the possibility of sufficiently chaotic
where the function ,,(s') is to satisfy the “map behavior, such that this exact representation generalizing

Q,.(s) = g A( {6 -2 / 4O (S,,)>’ 4y Eq.(2) is in doubt. It should be noted that those few,

0 special choices of A,(z) which lead to explicit solutions

and the Jacobian may be evaluated as for G.[A]—Coulomb potential, constant F,,, a laser po-
S0 , s’ tential—do not produce chaotic behavior; while perturba-

exp —ng) ds @A# {(s') — Zfo Qll tive and even nonperturbative eikonal approximations will

remove this possibility of chaos.

All of the scattering and bound states of potential
theory may be described by such G.[A] for a speci-
fied A,(x), while the correlation functions of quantum
field theory (QFTh) are obtained by Gaussian-weighted,
functional integration over A, of products of the G.[A].
We now argue that the possibility of vectorial-interaction
chaos in potential theory is suppressed by the quantum

It is the existence of the map [Eq. (4)] which leads to
the possibility of chaotic behavior in this context of vec-
torial interaction. With the representation €, (s') = dX,,/
ds’, Eq. (4) may be converted to a differential equation for
X, (s") or to one for x,(s") = £(s") — 2[X,(s) — X,.(0)],
whose solution will depend upon constants of integration
specified (e.g.) in terms of

(s =0 =z — 2s Z "(Py/N). field fluctuations of QFTh, wherein our previous A, (x) are

TN 5§ now denoted by fixed, classical Afj“(x), plus a fluctuating

If the A, (x) chosen is sufficiently nonlinear, one may ex- component A,(x): A, — AS" — A% + A,. In Ref. [3]
pect—and, as in Ref. [3], demonstrate—that chaotic be- we have represented the simplest, 2-point fermion cor-
havior may occur for Q,(s’), as expressed by a nonzero,  relation function S!(x,y|A®") and here sketch a similar
positive value of a suitably averaged Lyapunov expo- computation for this charged, scalar boson, taking all its
nent. This means ultrasensitive dependence on initial con- radiative corrections into account. Neglecting, for sim-

ditions, here specified via the z and Py variables; and plicity, closed bosonic loops, one has the expression
even in the “semiclassical” approximation of neglecting ' exty D ext
all (Py, Q) dependence, those initial conditions will be Aclr,y[A™) = eTGelx,y [A™ + 4) lamo,  (5)

given in terms of the z,. If some form of numerical in- where D = —(i/2) f(é/SAM)DC,,L,,((S/(SA,,) and D, ,, is
tegration over z is contemplated, unavoidably small er- the photon propagator.
rors will be introduced into the initial X,(0) dependence, One may now use Eq. (3) to evaluate Eq. (5) and obtain

|
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with f,(s") = Qu(s') — gAS({(s) — 2 /5 Q). The integral [d[¢] is now Gaussian and yields, instead of a delta
functional expressing the condition (4), the result
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0 0
where F[Q] = exp{—i [yds'[p — Q(s)*}, and (5] X | has been termed [4] “environment-induced decoherence”
Kuols2) = g2D¢ [ l(s1) — (1) — 2 fil Ql. as the special coherence underlying the delta functional
Equation (7) is a functional integral over a kernel de- is removed by the field fluctuations, along with the map
fined by the radiative corrections, which cannot be evalu- which can lead to chaos in potential theory. If the radia-

ated in closed form, but however complicated may be the tive corrections are of the same size or larger than chaotic
final result, it is not the chaos corresponding to the delta fluctuations of Aff‘, no effects of chaos should be seen
functional which defined the map [Eq. (4)]. That delta in the full QFTh; if, however, chaotic effects are much
functional was an example of “coherence” in the sense larger than typical radiative corrections, one might expect
that it is defined in terms of a product of delta functions, “irregularities” to persist in some aspects of the full,
each of which has a standard Fourier representation as an second-quantized theory. This expectation should be
integral, or a coherent sum of a simple phase factor over tested numerically or, if possible, analytically, for there
an infinite range of a relevant variable. The radiative cor- is always the possibility of the existence of an equiva-
rections of Eq. (5) then provide a clear example of what lent “phase change” between the two representations,
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which could yield completely different forms depending
on whether the full, radiative corrections were or were not
included.

Finally, it should be noted that the phrase “induced
decoherence” used here refers to a different phenomena
from that of, e.g., Ref. [5]. Our effect is strictly due to the
presence of vector interactions, whereas scalar QED was
considered in Ref. [5] as a semiclassical, electromagnetic
field in interaction with scalar fields. The decoherence of
that reference concerns a possible way in which quantum
states may lose their coherence and effectively provide a
basis for a classical description; ours refers, specifically,
to the decoherence induced by inclusion of the full
radiative corrections of QED and the subsequent removal
of the map (4), which could, otherwise, easily lead to
chaotic behavior of the exact correlation functions of the
complete quantum field theory.

A detailed version of these remarks for the electron
propagator QED, as well as various directions for further
inquiry based upon these ideas, is given in Ref. [3]. It
is a pleasure to acknowledge helpful conversations and
correspondence with H.-T. Elze, J.-D. Fournier, U. Frisch,
and W. Zurek.
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