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Vectorial Interactions and Quantum Chaos

H. M. Fried
Physics Department, Brown University, Providence, Rhode Island 02912

Y. Gabellini
Institut Non-Lineaire de Nice, 1361' Route des Lucioles, 06560 Valbonne, France

B.H. J. McKellar
School of Physics, University of Melbourne, Parkville, Victoria, 3052 Austrailia

(Received 13 January 1995)

Vectorial interactions (e.g. , QED) introduce the possibility of chaos into new, nonperturbative Green s
function representations of potential theory. The full, radiative corrections of quantum field theory,
however, remove such chaos in an explicit example of "environment-induced decoherence. "

PACS numbers: 11.10.—z, 05.45.+b

Causal, relativistic Green's functions G, (x, y I A) for the
propagation of a particle of mass I in a specified field,
or potential, A(z), are used in many branches of physics
and have two basic features: they may be written in terms
of a proper-time integral fo ds, which acts, in part, to
specify the causal nature of the function; and they contain
integrals f d z over all space-time coordinates z„, which
provide energy-momentum conservation at every potential
interaction:

N = 1, 3, 5, . . . . Equation (2) is an exact variant of
Fradkin' s functional representation [1] for G, [A], in
which all quantum Iluctuations [all terms of g(s') —z are
O(h/mc)] appear in the argument of a linear dependence
on A.

Representation (2) is a fairly new result [2], which sug-
gests a new, nonperturbative approach to such Green's
functions by the simple expedient of limiting the quadra-
tures associated with different N values to a finite few.
(It should be noted that when any of the N-dependent
fIuctuations of R~ are neglected, the corresponding nor-
malization integrals of Eq. (2) generate a factor of +1.)
For such finite-N quadrature approximations, one has, in
advance, a qualitative estimate of relative errors; and as
shown in Ref. [2] by comparison with a soluble, nontrivial
example, such estimates of relative error may be thought of
as upper bounds. The existence of such a tractable, non-
perturbative approach to G, [A] is the reason why Eq. (2)
can be of considerable interest in a variety of fields.

When vectorial interactions are considered, for
example, QED or QCD, a new feature appears [3] in
these nonperturbative representations: the possibility of
chaos. For simplicity, we here state the resulting Green's
function for a spinless boson field interacting with a
Maxwell field, accordin to the relation

—ismdse d'z (x IS(s, z) ly) (I)G(xylA)=i
Theories with scalar interactions require a Green's func-
tion which satisfies

[m —8, + gA(x)]G, (x, y I A) = 6 (x —y)

and have an exact Fradkin representation which may be
conveniently written in momentum space in the form

' 2

&ply'(;z)lp') =
(2~)4

d4P d4g i(Pe+ Q )/2~

S 2
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Rtt(s') =

g
where q = p —p', P = p + p', g(s') = z + s'P—

- I' —+[a' —gA(x)]' -G, (x, y IA) = 6'(x —y).
2ps N~s'~ N~s'~ p

Ptv cos
I

+ Qz sin
s ) Using techniques identical to those of Ref. [3], one

Here g~ and P~ correspond to the summation and constructs the representation [Eq. (1)] with the second line
product over terms specified by all positive, odd integers

I

of Eq. (2) replaced by

3V' d[@] d[A] exp i—ds'[p„—f1„(s')]' + i ds' P~ (s') f1~ (s') —gA„Q(s') —2

where 3V' is a normalization factor which disappears upon performing the functional integration f d[@]. The reason
for this complication, relative to the scalar case, is that each component of A~ must be allowed to transfer 4-momentum
to the first quantized particle m in a well defined but nontrivial way. The result of the f d[P] is then to produce a delta
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which could yield completely different forms depending
on whether the full, radiative corrections were or were not
included.

Finally, it should be noted that the phrase "induced
decoherence" used here refers to a different phenomena
from that of, e.g. , Ref. [5]. Our effect is strictly due to the
presence of vector interactions, whereas scalar QED was
considered in Ref. [5] as a semiclassical, electromagnetic
field in interaction with scalar fields. The decoherence of
that reference concerns a possible way in which quantum
states may lose their coherence and effectively provide a
basis for a classical description; ours refers, specifically,
to the decoherence induced by inclusion of the full
radiative corrections of QED and the subsequent removal
of the map (4), which could, otherwise, easily lead to
chaotic behavior of the exact correlation functions of the
complete quantum field theory.

A detailed version of these remarks for the electron
propagator QED, as well as various directions for further
inquiry based upon these ideas, is given in Ref. [3]. It
is a pleasure to acknowledge helpful conversations and
correspondence with H. -T. Elze, J.-D. Fournier, U. Frisch,
and W. Zurek.
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