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Critical Behavior of a Fluid in a Disordered Porous Matrix: An Ornstein-Zernike Approach

E. Pitard, ' M. L. Rosinberg, ' G. Stell, and G. Tarjus'
'Laboratoire de Physique Theorique des Liquides, * Universite Pierre et Marie Curie,

4 Place 3ussieu, 75252 Paris Cedex 05, France
2Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794

(Received 8 December 1994)

Using a liquid-state approach based on Ornstein-Zernike equations, we study the behavior of a Quid
inside a porous disordered matrix near the liquid-gas critical point. The results obtained within various
standard approximation schemes such as lowest-order y ordering and the mean-spherical approximation
suggest that the critical behavior is closely related to that of the random-field Ising model.
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The interpretation of experimental studies of the phase
behavior of fiuids (binary mixtures [1]or He [2])adsorbed
in disordered porous materials such as silica gels or Vycor
remains highly controversial. Some results lend support to
the view that preferential adsorption of one component and
randomness of the pore network give rise to a random-field
Ising-like behavior near the critical point, as suggested by
Brochard and de Gennes [3]. On the other hand, it has
been argued that the experiments in Vycor, which is a
glass with a fairly low porosity, can be interpreted in terms
of wetting in a confined geometry, with no randomness
[4]. Clear-cut conclusions are somewhat obscured by the
metastable and nonequilibrium effects which are often
present in the experiments. However, there is a need for
more realistic continuum descriptions which encompass
both randomness, confinement, and connectivity between
pores. The goal of this Letter is to present a liquid-
state approach describing a single component fluid in a
rigid disordered matrix and, starting from this microscopic
theory, to give some insight to the critical properties of
the fluid and their relation to the random-field Ising model
(RFIM) [5].

Following the formalism recently proposed by Madden
and Glandt [6], we consider the matrix-fluid system as
a special binary mixture in which the matrix is treated
as a rigid set of obstacles, obtained by quenching an
equilibrium configuration of particles (species 0), with the
fiuid particles (species 1) at equilibrium in the presence
of (and in interaction with) the quenched particles. The
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structure of this quenched-annealed (QA) mixture is
described by the total pair correlation functions h, , (r)
which satisfy a set of coupled integral equations, the so-
called replica Ornstein-Zernike (ROZ) equations [7]. As
in the usual OZ formalism [8], these equations relate the
functions h;, (r) to the corresponding direct correlation
functions c;,(r) which are expected to be short ranged
[i.e., jd r c;,(r) is finite], even at the critical point. The
exact form of the ROZ equations can be most easily
derived by using the replica trick which replaces the
study of the original system by that of an equilibrium
mixture compose'd of s copies of the fluid interacting
with the matrix. It should be stressed that, in contrast
to the standard replica treatment of quenched disorder,
there is no direct interaction between the fluid replicas
because the average over disorder (i.e., over all possible
configurations of the matrix particles) is not performed
explicitly. These ROZ equations represent the starting
point of our treatment and their formal solution in Fourier
space is given by
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where f(k) denotes the Fourier transform of a function
f(r) and p; is the average density of species i .In
deriving these equations, it has been assumed that there
is no replica symmetry breaking. As in the case of
disordered magnetic systems, one has introduced the
connected part, h, (r), and the blocked or disconnected
part, hb(r) = h~i(r) —h, (r), of the fluid-fluid correlation
function [7,9]; they are equal, respectively, to the s = 0
limits of h (r) —h p(r) and h p(r), where n and P 4
a denote fluid replicas. Similarly, c,(r) and cb(r) are
defined as the connected and blocked parts of c~ ~ (r). By
symmetry, one has hp~ = h&p and cp~ = c]p.

The above ROZ equations differ from those recently
derived for a Quid in the presence of a quenched, random,
external potential obeying a Gaussian distribution [10]:in
Eq. (ld), the quenched disorder enters explicitly through
a term involving the matrix-matrix and matrix-fluid direct
correlation functions which also appear in Eqs. (la) and

(lb), whereas in Ref. [10] it is only contained in the inter-
replica pair potential. As a result, the present formulation
is also able to take into account the geometrical constraint
on the fluid due to the presence of the matrix (excluded
volume and/or confinement effects).

It has been shown [9,11] that c, (0) is related to g~,
the compressibility of the fluid inside the matrix (i.e. , the
derivative of the fluid pressure P~ with respect to the den-
sity or, through the Gibbs-Duhem equation [9), the deriva-
tive of the fluid chemical potential), via the equation

kaTpiXi = [1 picc(0)]

Therefore, the gas-liquid critical point of the fluid inside
the matrix, if it exists, is characterized as usual by both
a diverging compressibility and long-range correlations.
However, a special feature of QA systems is that the dis-
connected part of the fiuid-fuid correlation function, and
as a consequence h» (r) itself, may be much longer ranged
that the connected part. Indeed, if one defines the expo-
nents g and ri by h, (r) —r "+2 " and hb(r) —r "+4

when r ~ at the critical point, one finds immediately
from Eqs. (lc) and (ld) that il = 2g. This result rests
only on the assumption that the matrix is noncritical, i.e.,
1 —Ppcpp(0) 4 0, and that cb(0) and cp~(0) are finite, a
condition generally expected for direct correlation func-
tions. This relation between g and g is, for instance, sat-
isfied within the standard Ornstein-Zernike approximation
which assumes that the direct correlation functions have
the same range as the associated pair interactions. For
short-ranged interactions, this gives q = g = 0, but, for
long-ranged fluid-Quid interactions decaying as r
for r ~ with o- ~ 2, one obtains g = 4 —2o = 2g.

Note that the same relation g = 2g has been proposed for
the RFIM [12] and seems to be confirmed by recent nu-
merical estimates [13].

To be more specific, we now suppose that the Auid-

fluid (matrix-fluid) pair potential can be divided into a
reference part which includes the short-range repulsive part
of the interaction and a more smoothly varying long-range
attractive part w~~(r) [wp~(r)]. As a first step, we derive
the mean-field (MF) results. As in the bulk fluid case,
this can be done by considering the lowest y-ordering
approximation which is derived by introducing the inverse
range parameter y in the attractive quid-Quid potential,
w»(r) = y"@(yr), and then taking the limit y 0 (see,
for instance, Ref. [8]). From the graphical expansion of
the three direct correlation functions cp~(r), cb(r), and
c,(r) [6], it is easy to show that cp~(k) = cp~(k), cb(k) =
cb(k), and c,(k) = c, (k) —(kqT) '@(0)6qp, where Bq p

is the Kronecker symbol and the superscript R indicates
a quantity calculated in a reference system for which
w~~(r) —= 0. The fact that cb reduces to its reference part
illustrates the fact that the Quid replicas are not directly
coupled (see above). Using Eq. (2), we immediately

(R)obtain a van der Waals equation of state, P] = P] +
2 p~ @(0). From the thermodynamic relations satisfied by
the QA mixture [9], we can conclude that besides g =
g = 0 the critical behavior is described by the usual MF
exponents, v =1/2, n =0, P = 1/2, y =1, 6 =3. As
illustrated numerically in Ref. [14] for a specific system,
the critical point is displaced from the MF critical point
of the bulk Quid because the reference system includes
the influence of the host matrix (note that in Ref. [14]
the matrix-Quid interaction is also treated in the MF
approximation).

To go further, some more quantitative statements on
the correlations over small distances must be made. This
can be implemented, within the OZ approximation men-
tioned above, by considering approximate closure relations
to the ROZ equations like the mean-spherical approxima-
tion (MSA) [8]. For bulk fluids, the MSA is known to yield
the same critical exponents as the spherical spin model
[15]. We now show that the same is true for a QA system.
To avoid unnecessary technical difficulties, we consider
the case of a d-dimensional lattice gas. We expect that
the behavior in the critical region will be identical to that
of a real continuum fluid. Lattice cells (or sites) can be
occupied either by matrix or quid "particles" and the pair
potentials contain a "hard-core" part which excludes multi-
ple occupancy of a cell (or site). It must be noted that even
for the lattice fluid there is no hole-particle symmetry be-
cause of the interaction with the matrix. Therefore, there
is no exact correspondence between this microscopic de-
scription of a fluid inside a matrix and the usual RFIM (see
also Ref. [16] for a related discussion). More precisely,
the standard equivalence between the lattice-gas and the
spin 1/2 model shows that we are actually dealing with
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a site diluted Ising model where the spins are coupled to
correlated external random fields which depend on the site
disorder variables [17]. Application of the MSA closure
in the matrix-replica mixture [i.e., ksTc p(r) = —w p(r)
for r 4 0 ] gives, in the limit s ~ 0,

6, O

coo(r) =—
(1 —po)

' c111(r) =
c11,~„o —Pwo1(r),

cb (r) = 0, c,(r) = c, B„o —P w11(r), (3)

where co& and c, are functions of temperature and fluid
density, which, owing to the structure of the ROZ equa-
tions, are completely determined by imposing the "core"
conditions hp1(r = 0) = h11(r = 0) = —1. Note that h,
and hb do not satisfy themselves the core requirement.
On the other hand, the prescription for cpo is the direct
consequence of the core condition for the matrix particles,
hpp(r = 0) = —1 (for simplicity, we assume that there is
no attractive interaction between matrix particles).

For clarity, we first consider nearest-neighbor (nn) in-
teractions in a hypercubic lattice. Generalizing the analy-
sis developed by Stell [15] and Theumann [18] for the
bulk lattice gas, we write the inverse Fourier transform of
X(k) = 1 + P1h (k) as

P1w11X(r) —= Gjr, ~
kpT

d k i k.r

(2~)" ~2 + 2g,",(1 —cosk, )
'

(4)

where k = (k1, . . . , kq) and ~ = [—2d + ksT(1 —p1c, )/
(—p1w11)]'~2 is an inverse correlation length which van-
ishes at the critical point. By replacing in the ROZ equa-

tions, we find

hp1(r) = fG(r, ~') + wp1 6, o
1 pp

2

hb(r) = wp, + 2wp1fG(r, v ) —f G'(r, gc ),
po 1 —po
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where G'(r, a ) —= BG(r, & )/11&2 and f = ksTco1
wp1(x. + 2d). Obviously, h, (r), hb(r), and hp1(r) have the
same correlation length ~ ', and g = g = 0. If d ~ 4,
no finite critical temperature exists since this would lead
to the unacceptable result that hb (r) and thus h11(r) do not
decay to zero when r ~ at the critical point. Using the
core conditions together with Eqs. (4)—(6) yields an im-
plicit equation relating ~ to the thermodynamic variables.
In the absence of hole-particle symmetry, the critical point
is found by requiring that (BP1/11P1), = (8 P1/r)p, ), =0
on the critical isotherm, which from Eqs. (2) and (4) is
equivalent to ~, = (B~ /Rp1), = 0. For our system, this
yields p1, = (1 —pp)(1 + 2yqpp)/2(1 + qpp) with q =
—1 —G'(0, 0)/G~(0, 0) ~ 0 and y = wp1/w», whereas
the shift of the critical temperature due to the presence of
the matrix is given by T, /T, "' = (1 —pp) [1 + 4y(1—
y)qpp]/[1 + qpp]; this ratio being always smaller than 1,
one has T, ~ T, "' . The behavior of the correlation length
in the critical regime can now be obtained by expanding
the implicit equation for ~ in terms of AT = T —T„
Ap~ = p] —p~„and ~. Using the asymptotic expansion
of the Green function G(r = 0, ~ ) [15],we finally obtain
ford ~4

po w» 4(1 + qpo)
(7)

!
where A, B are nonzero constants and C = 0 when and

only when d is odd. From this we can read off the ex-
ponents of the correlation length along the critical iso-
chore (v) and the critical isotherm (e, in the notation of
Ref. [15]), and then, with the help of the compressibility
equation (2) and the Gibbs-Duhem relation [9], the val-
ues of y and 6. For d ~ 6, one recovers the MF ex-
ponents whereas for 4 ( d ~ 6 one has v = 1/(d —4),
e = 2/(d —4), y = 2/(d —4), and 6 = d/(d —4). On
the other hand, when y = 1/2, one finds the MF exponents
as soon as d ~ 4. In this latter case, the system is easily
shown to be isomorphic to the site diluted spin model with
no random fields.

Using the expression of the configurational internal
energy,

1
U1 P1 w11(o) + powlo(0)

2

1+ —g[P1w11(r)h11(r) + 2ppw1p(1)h1p(r)],
rko

and deriving with respect to temperature, one finds that
the critical exponent n of the Quid specific heat C],
is always zero whereas the exponent n, characterizing
the singular part of C], if present, is always negative
and given by n, = (d —6)/(d —4) for 4 & d ( 6 and
n, = (6 —d)/2 for d ~ 6. Finally, the same arguments
as for the bulk lattice gas [15] lead to P = 1/2 for the
coexistence curve exponent. These calculations can be
easily generalized to non-nn interactions and to cases
where wp1(r) and w11(r) do not have the same range. The
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same exponents are recovered except that when wi~(r)
dies off like r ("+ ) with o. ( 2 one finds v = 1/(d—
2cT), y = o./(d —2o.), 6 = d/(d —2cr), and n, = (d-
3o.)/(d —2o.) for 2cr ( d ( 3o., whereas v = 1/o. , y =
1, 6 = 3, and n, = (3o. —d)/o. for d ~ 3o..

Except for the special case which reduces to the site di-
luted spin model without random field, all these exponents
coincide with those of the spherical model in a random
field [19]:in particular, we find that the disorder induces a
dimensional shift d ~ d —2 for short-range interactions
and d d —o. for long-range interactions. These results
are valid even in the absence of attractive matrix-fluid in-
teraction (y = 0 in the case of nn interactions). The fact
that the QA system and the random-field spin model have
the same behavior in the critical region does not guaran-
tee, however, that their thermodynamics coincide, and a
more complete study of the MSA phase diagram will be
presented elsewhere [17].

To summarize, we have related the critical behavior
of a fluid in a porous matrix to that of the RFIM
by using common approximations of liquid-state theory
[20]. The present treatment based on the ROZ equations
takes into account both disorder and excluded volume
effects. The fact that the connection with the RFIM holds
also in the absence of matrix-quid attractive interactions
suggests that preferential adsorption may not be a crucial
ingredient for observing a random-field-like behavior.
Of course, the identity of the critical exponents within
various approximation schemes is not a proof that the
two systems belong to the same universality class [21].
To go further, one must implement the techniques of
the renormalization group, which can be considered in
connection with liquid-state theory [22]. One must also
investigate a possible replica symmetry breaking (RSB)
mechanism which seems to occur in the RFIM [23]
(however, this is not expected at the MF [24] or spherical-
model levels [23]). For that purpose, it is necessary to
use a nonlinear closure to the ROZ equations, such as
the hypervertex approximations discussed in Ref. [25]. If
RSB indeed occurs in QA systems, the assumption that
the direct correlation functions remain short ranged, even
in the critical region, may lead to nontrivial predictions.
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