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Scaling and Singularities in the Entrainment of Globally Coupled Oscillators
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The onset of collective behavior among oscillators with random frequencies is studied for globally
coupled phase dynamical models. A Fokker-Planck equation for the phase distribution describes the
dynamics including diffusion due to the noise in the frequencies. We analyze instabilities of the phase-
incoherent state using amplitude equations for the unstable modes. In terms of the diffusion coefficient
D, the linear growth rate y, and the mode number l, the nonlinearly saturated mode amplitude typically
scales like (n (

—Qy(y + l2D) The .unusual y + l2D factor arises from a singularity in the cubic
term of the amplitude equation.

PACS numbers: 87.10+e, 02.50.—r, 05.40.+j, 05.70.Fh

The onset of collective oscillations is a multifaceted
phenomenon of interest in physics, chemistry, biology, and
most recently neuroscience [1—5]. One important class
of models describes a collection of N dissipative (limit
cycle) oscillators that have some weak mutual interaction.
For sufficiently weak couplings, the basic form of the
uncoupled cycle persists, and the fundamental effect of
the interaction is to alter the frequencies and evolving
phases of the oscillators. When the coupling between two
oscillators, f(II, —0;), is uniform for all oscillator pairs,
then the evolution of the phases is given by

N

8; = to, + —g f(8, —0;) + g;(t),
j=l

for i = 1, . . . , N. If the oscillators are uncoupled (K = 0),
then the phases simply evolve according to the unperturbed
frequencies ~; whose distribution is described by a density
g(to) characterizing the population. This normalized den-
sity is taken to have zero mean (to = 0); this can always be
achieved by changing variables, 0; 0; —cu t, if neces-
sary. For both physical and mathematical reasons, it is in-
teresting to include in (1) the effect of extrinsic white noise

g; (t) perturbing the deterministic phase dynamics; this per-
turbation is defined by the ensemble averages (g;(t)) = 0
and (g; (s) g, (t)) = 2D 6;,8 (s —t).

The form of the coupling function f(@)depends on the
description of the underlying limit cycles and their mutual
interaction, and will vary from one setting to another [2].
Mathematically, since the coupling f(P) is necessarily
2m periodic, we describe the general form by its Fourier
expansion

The simplest nontrivial possibility arises when the cou-
pling is dominated by a single Fourier component, and
the theoretical literature is largely focused on the case
f(@) = sing since this describes a strictly attractive in-
teraction between oscillators with different phases. Early
work by Kuramoto showed that, in the absence of noise
[g;(t) = 0], there was a critical coupling strength K,

above which a population g(to) would begin to show fre-
quency locking and partial ordering in the phases Oj. This
transition was analyzed by an order parameter R defined
as the time average of R(t),

N

R(t) eiP(t) g i9, (t)
N j=l

(3)

For large N if K ( K„ then R = 0, and for K ) K„
R scaled like R —(K —K,)'I . In the limit N ~ ~,
this numerical result was also obtained analytically from
a self-consistent calculation of R. For a population
of identical oscillators [g(to) = 6(to)] in the presence
of noise, Kuramoto analyzed the system of stochastic
equations for the phases via the resulting Fokker-Planck
equation which described the phase distribution. In this
theory, the solution with R = 0 becomes unstable for K )
K, and a new state with R —(K —K,)'t2 emerges. The
value for E, depends on the noise strength D in this case.
Subsequently, work has generalized the Fokker-Planck
approach to treat the phase dynamics for f (@) = sing in

populations with nontrivial frequency distributions g(to).
These studies also show a bifurcation to phase ordered
states with the same scaling R —(K —K,)'t2.

For couplings more general than f(@) = sin@, the prop-
erties of (1) are not understood, and this is an interesting
subject for several reasons. First, the couplings that are
derived when a reduction to phase dynamics is actually
carried out can easily have a more complicated structure
[2,6]. Second, recent results by Daido indicate that as the
form of f(@) is modified, the nature of the scaling expo-
nent R —(K —K,)P can change from the value 1/2 [7].
Thus different forms of f(P) will correspond to differ-
ent universality classes. Daido specifically considers (1)
without noise and applies his "order function" formalism
devised as a generalization of Kuramoto's self-consistent
calculation of R in the limit N ~ [8]. His treatment as-
sumes the transition is triggered by the f, components
of the coupling and analyzes the self-consistent equation
perturbatively to leading nonlinear order. The nature of
the solution depends on a certain expression "Im(f 2C)"

0031-9007/95/74(21)/4341(4) $06.00 1995 The American Physical Society 4341



VOLUME 74, NUMBER 21 PH YSICAL REVIEW LETTERS 22 MAY 1995

where C is a complicated function of the Fourier compo-
nents of the order function. If this expression vanishes
then the solution scales in the usual manner with P = 1/2,
but if this expression is nonzero then the solution scales
with P = 1. Thus a coupling with f~ f2 4 0 is predicted
to produce transitions with weaker phase ordering near on-
set than the transitions associated with the sin@ coupling.
A third motivation for analyzing the transitions in (1) due
to couplings of general form is the unusual character of
the bifurcations found in the Fokker-Planck description of
these phase-ordering transitions: In the absence of noise,
the unstable modes correspond to eigenvalues emerging
from a neutral continuum at onset [9—11]. This same fea-
ture has been noted in instabilities in other systems such
as collisionless plasmas [12,13], ideal shear Ilows [14—
16], solitary waves [17,18], and bubble clouds [19]. It is
known that in some of these systems the nonlinear interac-
tions between the unstable modes and the continuum can
be singular in the sense that the amplitude equations for
the modes become singular as the eigenvalue approaches
the continuum [12,13,16]. In these cases the singularities
serve to alter the "expected" scaling behavior of the un-
stable modes. This is known not to occur for (1) when

f(@) = sin@ [11],but Daido's results suggest this conclu-
sion may depend crucially on the form of the coupling.

In this Letter, I analyze the bifurcation from the phase-
incoherent state with R = 0, in the limit N ~ ~, within
the framework of the Fokker-Planck equation [9—11,20]

6p B(p v) a2p
+ = D

Bt BO ~)I02

The density p(0, cp, t) is defined so that Ng(cv) X

p (0, tv, t) d 0 d tp describes the number of oscillators
with natural frequencies in [cu., cp + dip] and phases in

[0, 0 + d 0]. Thus p (0, tv, t) d 0 denotes the fraction
of oscillators with natural frequency co and phase in

[0, 0 + d0] and must satisfy the normalization fp dO X

p(0, tp, t) = 1 when g(tp) 4 0. In the limit N ~ ~, the
deterministic part of the phase velocity (1) is expressed as
an integral over the population

v(O, tp, t) = M + K des' f (0' —0)

x p(0', cu', t)g(tp'), (5)

R(t) d p~' p(0', cp', t) g(a)')e', (6)

and the incoherent state (R = 0) is described by the
uniform distribution pp = I/2~; this distribution is an
equilibrium for (4) since v(0, tp, t) = cp + Kfp at p =
pp. By setting p(O, tp, t) = pp + rt(O, tp, t), the dynamics
can be rewritten for g,

(7)

in terms of the linear operator

and the coupling f(P) is described by its Fourier expan-
sion (2).

In this framework, the appearance of collective behav-
ior is described by autonomous equations for the ampli-
tudes of the unstable modes (18). The time-asymptotic
solutions of the amplitude equations in turn determine
the scaling of any order parameter used to measure the
strength of the collective behavior. In this study, the am-
plitude equation is calculated to third order (19) where
the coefficient of the cubic term (20) exhibits a singu-
lar behavior as D ~ 0 that alters the scaling of the time-
asymptotic state. At D = 0, for the unstable modes previ-
ously considered by Daido, this analysis predicts the same
shift in scaling when the coupling contains both f ~

and f2
components, and generalizes his result to the case of an
arbitrary coupling with an unstable mode of general form.
In addition, the cubic term describes the regularizing ef-
fect of the noise.

Equations (4) and (5) provide a continuum description
of the oscillator population for which issues of stability
and bifurcation can be analyzed in some detail. In this
description, Kuramoto's order parameter (3) is given by

Xtj = D —(cp + Kfp) + K
80~ BO 2~

and nonlinear terms

dip' f'(0' —0)i1(0', tp', t)g(o)') (8)

dao' g(0', c0', t) g(tp') g(0, cp, t)f'(0' —0) — (0, tp, t)f(0' —0) (9)

In (8) and (9), f'(@) =—df /d@, and note that the normali-
zation of p implies fp dO rt(0, tp, t) = 0.

The linear stability of po, the onset of linear instability,
and the subsequent nonlinear bifurcation have been previ-
ously analyzed in detail for the specific case f(@) = sin@
[9—11]. For an arbitrary coupling f(P), the generaliza-
tion of this stability theory is summarized here as a pre-
requisite for the bifurcation analysis. The operator 5 acts

independently on each Fourier subspace exp(inO); con-
sequently, the spectrum can be described by analyzing
5 W = AW for functions W(0, c0) = P(cp) exp(inO) with
n ~ 0. In general this spectrum has both eigenvalues
and a continuous component: For each mode number
n = 1, 2, . . . , there is a line of continuous spectrum at
Re% = —n D; in addition, L has eigenvalues when the
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function

A„(z) =—1 + Kf„*
g(~)

dco
cu + Kfp —z —inD

(10)

has roots. More precisely, if for a particular mode number
n = l, one finds AI (zp) = 0, then A = il—zp is an eigen-
value of X and %(0, cp) = P(cp) exp(ilO) is the eigenvec-
tor for A with

(~) = —g(~)
A( (zp)*(tp + Kfp —

zp + ilD)
(12)

and 5 t'Ir = A"'W. The normalization in (12) assumes
the root go under consideration is simple; this assump-
tion can be relaxed if necessary but is characteristic of
the codimension one bifurcations [11]. This adjoint eigen-
function satisfies (Ir, 0') = 1 and defines the projection,
g ~ (W, g) I', from g onto the 'II' component of g.

The example of a Lorentzian population,

1
g(~) =-

7T CcP + E
(13)

provides an instructive illustration. For given values of
(l, K, e), the solutions to AI (zp) = 0 are easily located and
one finds that 5 has an eigenvalue

l[lD + e +—K lm(f~)] —i /K[Re(f~) + fp] (14)

whenever K Im(f~) ( —e. Since e ) 0 and K ~ 0, the
occurrence of these modes requires a coupling such that

Im(f&) ( 0. For f(@) = sin@, this is only possible for
l = 1, but in general the mode number is not constrained.
These modes are linearly stable when lD + e + K &&

Im(f~) ~ 0 and become linearly unstable for K )K,
where K, = (lD + e)/Im(f—I). For f(@)= sin@ and l =
1 this reduces to the familiar result K, = 2(e + D) [9].

For D ) 0, the resulting bifurcation for K ) K, can
be analyzed by a center manifold reduction which yields
an amplitude equation describing the time-asymptotic be-
havior of the unstable mode. We introduce this ampli-
tude by writing g in terms of the critical linear modes 9'
and the remaining degrees of freedom S: g(O, tp, t) =
[n(t)%(O, cp) + c.c.] + S(O, tp, t) where ('P, S) = 0. In
terms of (n, A) the evolution equation (7) becomes

n = an + (4, 3V(q)), (15)

P(~) = K f(—
cp + Kfp —

zp
—ilD

The adjoint operator (5 ~A, B) = (A, 5 8), defined via the
inner product (A, B) —= fp" dO f™dc' A(0, tp)* 8(0, ~),
has a corresponding eigenfunction 'P = P(cp) exp(ilO)/
2~ where

5 is a function of n and n*,

S(0, cp, t) = H(0, tp, n (t), n (t)')

H, m, u I, o. t e (17)

For these solutions ri' we have g'(O, tp, t) = [n(t) x
9'(0, tu) + c.c.] + H(0, tp, n(t), n(t)'), and their dynam-
ics is described by the two-dimensional flow

n = A n + (%, 3V(g')). (18)

The calculation of p~ from (18) yields

p&
= 2vriKl[fi(P, h2—i,p) + f2~(P, P )(g, h2l p)], (20)

where the brackets denote an integration over cp, (A, 8) —=

f des A*8, and the function h2~p is determined self-
consistently to be [21]

4' lKfI—
21(cu + Kfp zp i 2lD)hei, p(~) =

The center manifold dynamics (18) and the function
H in (17) are both constrained by the symmetries of the
problem. The group O(2) is generated by rotations p .

(0, co) = (0 + p, cp) and reflections ~ (0, cp) = —(0, cp)

which act on functions g(0, tp) in the usual way: for
any transformation y E O(2), (g g)(9, cp) =—g[g
(0, cp)]. The operators 5 and 3V commute with rotations
for arbitrary choices of g(tp) and f(@); in addition if
g(tp) = g( —cp) and f(@) = f( P),—the—n L and 3V
commute with the reAection ~. In the latter circumstance
the bifurcation problem has O(2) symmetry, otherwise the
rotational symmetry alone corresponds to SO(2).

The Fourier coefficients of H for n ~ 0 are zero
unless n is a multiple of l, the mode number of the
instability. Rotational symmetry implies that the nonzero
coefficients have the form H~ = n o.hI(tu, o.) for n =
l and H„(tp, n, n*) = n h, (tp, o.) 6„ I for m = 2, . . .
where tr = ~n~2 denotes the basic SO(2) invariant. The
functions h„(tp, o.) are unconstrained by the rotations,
but must satisfy h„(—cp, o.)* = h„(cp, o.) when reflection
symmetry holds. Similarly, rotational symmetry implies
the amplitude equation (18) must have the general form
n = p(a. )n where p(o.) is a real-valued function if the
reflection symmetry holds; otherwise p(o.) is generically
complex valued.

For K near K„we expand p(o-) = pp + p~o. +
and h„(cp, cr) = h„p(Cp) + h, ~(t0)o. + . . . and seek the
leading (and presumably dominant) nonlinear terms in the
amplitude equation (18)

n = n[A + p)fnf' + . . ]. (19)

= 5 S + 2V(q) —[(4, 3V(q)) + + c.c.] . (16)
X P(cp)—

2lAz( (zp)

The center manifold theorem asserts that any new solu-
tions created by the bifurcation can be found by assuming

g(~')0(~')
tp' + Kfp —zp —i2lD

. (21)
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For the special case f(P) = sintb, the instability arises for
l = 1 and the fzI component is zero. Then the second
terms in (20) and (21) are absent and the results of
Ref. [11]are recovered.

When fzt 4 0, the new terms change the appearance
of the bifurcation significantly due to the factor (P, P*)
in (20). From (11) and (12) one sees that the integrand
has poles co = (II/l —Kfo) 4- i(l D + y)/l above and
below the contour along the real axis; here zo = (0 +
iy)/l is the root and y the linear growth rate from

ilz—o T.he y ~ 0 limit of (P, tl"') in p~ produces
a pinching singularity when D is small or zero, and
this singularity contributes a factor (y + l D) to the
denominator when the integral is evaluated,

lft Im(ft)
(y + I'D) Iftl'AI(zo)

(22)

The remaining integrals (P, hzt o) and (g, hzI o) in (20) are
well behaved as y ~ 0+ since all poles lie in the same
half plane.

The effect of the singularity (y + l D) in (22) is
clarified by scaling the amplitude

df' = r(r) [1 + Re(pt) (y + l D) r + . .], (24)
d7

= 0 —Im(pt) y(y + l D) r +-2 2

dt
(25)

Here r —= yt is the slow time scale determined by the
linear instability, and the coefficients in (24) and (25)
are now finite as y ~ 0+ even when D = 0. Assum-
ing that as t oo the instability saturates with the mode
amplitude tending to a nonzero limit r(r) ~ r, then the
magnitude of this mode Ia I

= Qy(y + lzD) r deter-
mines the scaling exhibited by the entrained state. For
y + l D sufficiently small, the amplitude equation (24)
becomes independent of y and D and the scaling behav-
ior of the entrained state follows the explicit dependence
shown in (23). For D ) 0, there is a crossover from

I

—y for y ) l D to In I
—~y for y ( lzD . In.

the noise-free limit, this crossover does not occur and the
Ia I

—y scaling persists as the true asymptotic behavior.
Since y —K —K, near onset, these results determine the
scaling exponent Icr I

—(K —K, )P. In the special case
D = 0 and l = 1, these conclusions support Daido's find-

tz(t) = y(y + l D) r(yt)e

so that the equations for r(r) and p(t) from (19) are

non singular,

ings: if fz = 0, then the singularity is suppressed and the

p = 1/2 scaling occurs; if fz 4 0, then the l = 1 insta-
bility leads to an entrained state characterized by p = 1.

Several important and related questions remain: When
fzt & 0 and the cubic singularity occurs, what are the sin-
gularities of the higher order terms in the amplitude equa-
tion? Does the amplitude scaling in (23) suffice to control
the higher order singularities if they occur? Finally, when

fzt = 0 are there higher order singularities that alter p
from the value 1/2 predicted by the cubic analysis? These
issues will be addressed in a subsequent paper [22].
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