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Exact Solution for On-Line Learning in Multilayer Neural Networks
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We present an analytic solution to the problem of on-line gradient-descent learning for two-layer
neural networks with an arbitrary number of hidden units in both teacher and student networks.

PACS numbers: 87.10.+e, 02.50.—r, 05.20.—y

Layered neural networks are of interest for their abil-
ity to implement input-output maps [1]. Classification
and regression tasks formulated as a map from an N-
dimensional input space g onto a scalar g are real-
ized through a map g = fi(g), which can be modified
through changes in the internal parameters [J) specifying
the strength of the interneuron couplings [2,3]. Learn-
ing refers to the modification of these couplings so as to
bring the map f~ implemented by the network as close
as possible to a desired map f. The degree of success is
monitored through the generalization error, a measure of
the dissimilarity between f~ and f.

Learning from examples in layered neural networks
is usually formulated as an optimization problem [2,3],
based on the minimization of an additive learning er-
ror defined over a training set composed of P inde-
pendent examples ((t', ("), with (t' = f(g"), 1 ~ p ~
P. Statistical physics tools for investigating the prop-
erties of such models, based on the use of the replica
method, have been successfully applied to the analysis
of single-layer perceptrons [3] and some simplified two-
layer structures (e.g. , committee machines [4]). Analysis
of more complicated multilayer networks is hampered by
technical difficulties due to the complex structure of the
solutions in a space of order parameters [5], which de-
scribe in this case correlations among the various neurons
in the trained network, as well as their degree of special-
ization toward the implementation of the desired task.

A recently introduced alternative approach investigates
on line learning -[6]. In this scenario the couplings are
adjusted to minimize the error after the presentation of
each example. The resulting changes in [J] are de-
scribed as a dynamical evolution, with the number of
examples playing the role of time. The average that ac-
counts for the disorder introduced by the independent
random selection of an example at each time step can be
performed directly, without invoking the replica method.
The resulting equations of motion for the relevant order
parameters characterize the structure of the space of so-
lutions and allow for a computation of the generalization
error.

While investigating the on-line learning scenario pro-
posed by Biehl and Schwarze [6], we found an unexpected
result: The dynamical equations for the order parameters

can be obtained analytically for a general two-layer stu-
dent network composed of N input units, K hidden units,
and a single linear output unit, trained to perform a task
defined through a teacher network of similar architecture,
except that its number M of hidden units is not necessarily
equal to K.

Two-layer networks with an arbitrary number of hidden
units have been shown to be universal approximators
[1] for N-to-one dimensional maps. Our results thus
describe the learning of tasks of arbitrary complexity
(general M). The complexity of the student network is
also arbitrary (general K, independent of M), providing
a tool to investigate realizable (K = M), overrealizable
(K ) M), and unrealizable (K ( M) learning scenarios.
Such capabilities are to be contrasted with previously
available results; the equations provided in [6] can only
describe a committee rnachine with K = 2 hidden units
learning a linearly separable task (M = 1).

In this Letter we limit our discussion to the case of
the soft-committee machine [6], in which all the hid-
den units are connected to the output unit with positive
couplings of unit strength, and only the input-to-hidden
couplings are adaptive. Consider the student network: hid-
den unit i receives information from input unit r through
the weight J;„and its activation under presentation of an
input pattern g = (gi, . . . , g~) is x; = J; g, with J; =
(J;i, . . . , J,~) defined as the vector of incoming weights
onto the ith hidden unit. The output of the student network
is tr(J, g) = g, , g(J; g), where g is the activation func-
tion of the hidden units, taken here to be the error function
g(x) =—erf (x/~2), and J —= [J;)i; tc is the set of input-
to-hidden adaptive weights.

Training examples are of the form (gt', gt'). The
components of the independently drawn input vectors g&
are uncorrelated random variables with zero mean and
unit variance. The corresponding output gP is given by a
deterministic teacher whose internal structure is that of
a network similar to the student except for a possible
difference in the number M of hidden units. Hidden unit n
in the teacher network receives input information through
the weight vector B, = (B„i,. . . , B„tv), and its activation
under presentation of the input pattern g& is yn

The corresponding output is g& = g„,g(B, gt").
We will use indices i, j, k, l. . . to refer to units in the
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Performance on a typical input defines the generalization
error eg (J) —= (e (J, g))1~l through an average over all

possible input vectors g, to be performed implicitly
through averages over the activations x = (xj, . . . , xz) and

y = (yj, . . . , yM). Note that both (x;) = (y, ) = 0, while
the components of the covariance matrix C are given by
overlaps among the weight vectors associated with the
various hidden units: (xjxl): Jj ' Jk: Qjg (x;y, ) = J; .

B„=—R;„and (y„y ) = B„B —= T„The av. erages
over x and y are performed using a joint probability
distribution given by the multivariate Gaussian:

1
2 (x, y) =

(2~)~+M IC I

exp ——(x, y) C '(x, y),

Q R
with C = (2)

The averaging yields an expression for the generaliza-
tion error in terms of the order parameters Q;j„R;„,and

For g(x) =—erf (x/~2), the result is

1 Qk
41 + Q v'I + Qkk

Tnm+ are sin
Ql + T„„gl + T

—2 g arcsin '"
~ . (3)1+ Q;; 1+T„„

The parameters T„are characteristic of the task to be
learned and remain fixed, while the overlaps Q;q and R;„
are determined by the student weights J and evolve during
training.

A gradient descent rule for the update of the student

weights results in J; = J; + ~ 6; g", where the learn-jL+1 jL g p,

ing rate g has been scaled with the input size N, and

student network, and n, m, . . . for units in the teacher
network.

The error made by a student with weights J on a given
input g is given by the quadratic deviation

~(J, 4) =—
2

I:~(J,0) —&]'=1
K M

i=1 n=l

is defined in terms of both the activation function g and
its derivative g'.

The time evolution of the overlaps R;„and Q;l. can be
explicitly written in terms of similar difference equations.
The dependence on the current input g" is only through
the activations x and y, and the corresponding averages
can be performed using the joint probability distribution
(2). In the thermodynamic limit N ~ ~, the normalized
example number n = p, /N can be interpreted as a contin-
uous time variable, leading to the equations of motion:

dR;n

d
'" = n(~ y. ),

dQu = ri(B;xk) + g(Bj,x;) + ri (6;Bg).2

dA
(5)

/Q„
C3 = Rn

(Q,

R;n

Tnn

R),
R)n

Q,, )
I3 is given in terms of the components of the C3
covariance matrix by

2 1 C23(1 + Cll) —Cj2Cl3
I3 =—

7r v'A3 ~+C»

With A3 = (1 + Cll) (1 + C33) Cj3, The expression
for I4 in terms of the components of the corresponding
C4 covariance matrix is

I4 =

The averages in Eq. (5) can be performed analytically for
the choice g(x) = erf(x/~2).

We find that after a considerable amount of algebra,
the equations of motion can be proven to reduce to a
surprisingly compact form in terms of only two mul-
tivariate Gaussian integrals: I3 —= (g'(u)vg(w)) and I4 =—

(g'(u)g'(v)g(w)g(z)). Arguments assigned to I3 and I4
are to be interpreted following our convention to dis-
tinguish student from teacher activations. For example,
I3(i, n,j ) —= (g'(x;)y„g(x, )), and the average is performed
using the three-dimensional covariance matrix C3 which
results from projecting the full covariance matrix C of
Eq. (2) onto the relevant subspace. For I3(i, n, j) the cor-
responding matrix is

—= g'(x,") g g(y. ) —P g(x;) (4)
where A4 = (1 + Cjl) (1 + C22) —Cj2, and

Ap =A4C34 C23C24(1 + Clj) —Cj3Cj4(1 + C23) + ClgCl3C34 + Cl2Cj4C23~

Aj =A4(1 + C33) C33(1 + Cjj) —Cj3(1 + C22) + 2Cj2C]3C33~

Ag —A4(1 + C44) —Cq4(1 + Cj j) —Cj4(1 + C33) + 2Cl2Cj4C24.

The final form of the equations of motion for the overlaps is
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dR;„
dc'

I3 i, n, m — I3 i, n, j
U/ J

dQk
l7 ' Q I3 (i, k, m) —Q I3 (i, k,j ) + rl . Q I3 (k, i, m) —g lq (k, i,j )

dA

+ zl QI4(i, k, n, m) —2/I4(i, k, j, n) + QI4(i, k,j, l)
n, m

These dynamical equations are the main result of our
paper, and provide a novel tool for analyzing the learning
process for a general soft-committee machine with an
arbitrary number K of hidden units, trained to perform
a task defined by a soft-committee teacher with M hidden
units. This set of coupled first-order differential equations
can be easily solved numerically, even for large values
of K and M, providing valuable insight into the process
of learning in multilayer networks, and allowing for the
calculation of the time evolution of the generalization
error (3).

A detailed investigation of the realizable case (K = M)
includes the dependence of the learning process on the
learning rate g, the dynamical trapping on a symmetric
subspace which exhibits no differentiation among student
hidden units, the emergence of specialization, and the ex-
ponential convergence to perfect generalization. We post-
pone the discussion of these effects to a subsequent report
[7], and conclude this presentation with two simple exam-
ples which demonstrate the power of the approach devel-
oped here when applied to the analysis of overrealizable
and unrealizable learning scenarios.

The first example demonstrates that the learning
process prunes unnecessary nodes when the student
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FIG. 1. Dependence of the overlaps and the generalization
error on the normalized number of examples n, for a three-
node student learning a two-node teacher: (a) the lengths of
student vectors, (b) the correlation between student vectors, (c)
the overlap between various student and teacher vectors, and
(d) the generalization error.

network has excessive resources. A teacher with M = 2
hidden units characterized by T„=- n6, is to be learned
by a student with K = 3 hidden units. The initial values
of the order parameters are R;„=0 for all i, n; Q;I, = 0
for all i 4 k; while the norms Q;; of the student vectors
are initialized independently from a uniform distribution
in the [0,0.5] interval. The time evolution of the various
order parameters is shown in Figs. 1(a)—1(c) for zl = 1.
The picture that emerges is one of specialization with in-
creasing n, asymptotically the first student node imitates
the first teacher node (QII = RII = TI I) while ignoring
the second one (RI 2

= 0), the second student node
imitates the second teacher node while ignoring the first
one, and the third student node gets eliminated (Q33 0).
The off-diagonal components Q;k shown in Fig. 1(b)
indicate that the two surviving student vectors become
increasingly uncorrelated. The overlap between student
and teacher hidden nodes shown in Fig. 1(c) displays
a small o. behavior dominated by an undifferentiated
symmetric solution, followed by a transition onto the
specialization required to obtain perfect generalization.
The corresponding evolution of the generalization error is
shown in Fig. 1(d).

The second example reveals the learning strategy in
an unrealizable scenario, in which the student does not
have enough resources to implement the task and cannot
achieve perfect generalization. Numerical results are
shown in Fig. 2 for K = 3, M = 4, and g = 0.6. The
characterization of the teacher and initialization of the
order parameters is as before. Examination of the time
evolution of the order parameters shows that trapping
in the symmetric subspace is followed by a process
in which each student unit specializes on one of the
three dominant teacher nodes (i = 1 ~ n = 2, i = 2
n = 4, i = 3 n = 3) while ignoring the other two,
and all three student nodes retain some overlap with
the less dominant teacher node, n = 1. This residual
overlap generates nonvanishing correlations among the
student vectors, as shown in Fig. 2(b). Note that the
specialization of the student hidden units is ordered
according to the relevance of the corresponding teacher
nodes, resulting in a cascade of specialization transitions.
The evolution of the generalization error is shown in

Fig. 2(d).
These examples illustrate the first step in a systematic

application of the equations of motion (8) to the analysis
of a given learning scenario: Numerical studies of small
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including correlations among the teacher hidden nodes,
and extended it to include the effect of noise at both input
and output level, as well as regularization through weight
decay.

The equations of motion (8) are easily extended to the
case where the hidden-to-output teacher weights are not
restricted to be positive and of unit strength, and are adap-
tive in the student network. The requirement of linear
output units can be relaxed to allow for continuous activa-
tion functions at the output level. We have presented here
the only available tool for studying such general aspects
of learning and the emergence of generalization ability in
multilayer networks.

The work was supported by the EU Grant No. CHRX-
CT92-0063. D. S. would like to thank the Niels Bohr
Institute and the CONNECT group for their hospitality.

FIG. 2. Dependence of the overlaps and the generalization
error on the normalized number of examples n, for a three-
node student learning a four-node teacher: (a) the lengths of
student vectors, (b) the correlation between student vectors, (c)
the overlap between various student and teacher vectors, and
(d) the generalization error.

networks that reveal the essential features are followed
by studies of increasingly large networks to capture
trends and regularities, which are then quantified through
analytic investigation of the relevant fixed points and
their stability [7]. We have applied this program to the
analysis of learning scenarios of the type described here,
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