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Correlations and Coarsening in the q-State Potts Model
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We study the nonequilibrium dynamics of the q-state Potts model following a quench from the
high-temperature disordered phase to zero temperature. We calculate, within a Gaussian closure
approximation, the time-dependent two-point correlation functions for general q. These correlation
functions obey dynamic scaling with a length scale L(t) —t't2, while the autocorrelation function
decays as L(t) "'~'. We also establish a correspondence of this model to the Ising model evolving with
a fixed magnetization (2/q —I). Extensive numerical simulations of the Potts model in two dimensions
show good agreement with our theory.
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Coarsening of domains of equilibrium ordered phases,
following a quench from the disordered homogeneous
phase to a regime where the system develops long-range
order, is widely observed in many physical systems such as
binary alloys, liquid crystals, magnetic bubbles, Langmuir
films, and soap bubbles [1,2]. After the quench, domains
of different ordered phases form and grow with time as
the system attains local equilibrium on larger and larger
length scales. A dynamic scaling hypothesis suggests that
at late times the system is left with a single length scale
(the linear size of a typical domain) which grows with time
as L(t) —t", where n depends on the conservation laws
satisfied by the dynamics [1,2]. For systems with only two
types of ordered phases (such as a binary alloy or the Ising
model), the nonequilibrium coarsening dynamics have
been extensively studied experimentally, numerically, and

by approximate analytical methods. Comparatively, much
less is known when there are more than two ordered phases.

A particular example of the latter class of models is the
q-state Potts model [3]. For q = 2, this corresponds to
the Ising model, and there are experimental realizations
also for q = 3, 4, ~ [3]. As q increases, the morphology
of the coarsening patterns changes from one of large,
connected, interpenetrating domains to one of more and
more isotropic droplets. The limit q ~ ~ is known to
correctly describe the evolution of a dry soap froth, or
the growth of metallic grains [4]. Most studies of soap
bubbles have so far focused on geometrical properties of
the froth. For instance, mean-field treatments [5,6] and
numerical simulations [4], as well as experiments [7], have
addressed issues such as the joint distribution of bubble
areas and coordination number. For the Potts model with
finite q, there have been only numerical studies of the
growth law of domains, substantiating the form of the
growth law, L(t) —t 't~ [4,8], and the scaling of the equal-
time correlation function [8].

In this Letter, we go beyond mean-field theory and
present an approximate analytical way to compute both
the equal-time and two-time correlation functions. We

establish scaling and calculate the scaling functions as
well as the exponent A(q) which describes the temporal
decay of autocorrelations [9).

For the Ising model, a continuum description can be
based on a coarse-grained order parameter field @(r,t).
For later convenience, we choose it to be the "occupation
density" which takes values 1 in the bulk of one phase and
0 in the other ones. A suitable Landau free energy describ-
ing the ordered phase is F[$] = f d"r[z (V@)2 + V(@)],
where the potential V(P) has a double-well structure, e.g. ,

V(P) = @ (1 —@) with degenerate minima at @ = 0, 1

representing the two ordered phases. The evolution of
P(r, t) at zero temperature is described in terms of the
model-A Langevin equation [10]

Dynamic scaling suggests that, at late times, the equal-time
correlation function ($(O, t) @(r,t)) scales as g(r/L(t))
while the autocorrelation with the initial state A(t) =
($(r, O) @(r,t)) decays as A(t) —[L(t)] [9]. The scaling
function g(x) and the exponent A have been estimated
both numerically and by approximate analytical methods
by several authors [1,2]. Of these approximate methods, a
reasonably successful one (at least for model-A dynamics)
is due to Mazenko [11]. In what follows, we extend some
of these ideas developed for two-phase systems to treat the
coarsening of q-phase systems.

A suitable description of the q-state Potts model may
be based on q coarse-grained occupation density fields
(Pt(r, t); l = 1, 2, . . . , q) such that @t assumes the value 1

in the interior of the lth ordered phase and decays contin-
uously to 0 outside. Consequently, inside any "bubble"
of one phase, only one of the Pt's is close to 1 and the
others are all close to 0. We thus require a potential with

q degenerate minima at [1,0, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . ,

[0,0, 0, . . . , 1], which prevents two different bubbles from
sharing the same position in space. A suitable free-energy
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functional is [12]
q q

d'r P[-,(~Pi)'+ V(@i)] —Ai P4~ —1 + A. P(4i —
—,)'—

t=1 ) tt=1

—2-

(2)

where A~(r, t) is a Lagrange multiplier enforcing the
constraint P, Pl = 1, and A2 is a constant of O(1) such
that the state [1/q, . . . , 1/q] is unstable. Then the equation
of motion is

' = V'y, —V'(y, ) + A, —4A, (@, —
—,)

q

&& P (Wr' ~) (3)
I'=1 q

1

and A& = —P, V'(@~), by requiring g, @~ = 1 in Eq. (3).
We note that this evolution equation has a form similar to
that of Eq. (2.10) of Ref. [8].

The two-point correlation function for the q-state Potts
model is defined as G(12) = pl=&(@~(r~, t~) P~(rq, t2)),
and therefore equals q(@l(r~, t~) $1(r2, t2)), due to the sym-
metry between the q phases. Here, "12" is a shorthand
notation for the pair of space-time points (r~, t~) and

(r2, t2). Due to the isotropy and translational invariance
in space, the only spatial dependence of these correlation
functions is through r = ~r~

—r2~. Denoting the equal-
time correlation function (t &

= t2 = t ) by G (r, t), we get
from Eq. (3),

1 0G
2 Bt

= V G —q(@,(0 t) [V'(P, (r t)) —A, ))

—4A2q t 0 t (r t —1 q

q

&& g @,', (r, t) —1
I'=1

Note that the two-time correlation function satisfies a
similar equation.

Our first approximation is to replace g, @& by its av-
erage q(@I ) = G(0, t) in the third term on the right-hand
side of Eq. (4), which becomes exact in the q ~ limit.
Furthermore, the scaling solution G(r, t) = g(r/L(t))
must satisfy g(0) = 1, so that we can drop the term
4A2[G(r, t) —1/q][G(0, t) —1] so produced. Thus the
third term, although important in the evolution of @~
since it provides stability to the bubbles, is not crucial
in the evolution of the correlation functions, at least
in the scaling limit of the large-q model, and also for
q = 2. Next, using g@~ = 1, we get (A~ g@~) = (A~)
and then, given the symmetry between the q phases,
(@&A&) = (1/q) (A&) = (@1)(A&). Thus, without approxi-
mation, we replace A

& by its average (A &), which is simply
a function of time. As a result, Eq. (4) reduces to an
equation involving only a single field cb~(r, t):

= ~'G —
q&@ (o, )[V'(0 (, )) —

&A ))&. (5)
1 BG

Interestingly, Eq. (5) is also the evolution equation for
the two-point correlation in an Ising model evolving
with fixed average magnetization (mp) = 2/q —1 (equiv-
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alently, with a density of minority "up" spins fixed at
1/q). The droplet domains of the minority phase in this
Ising model would correspond to the bubbles of a particu-
lar phase in the Potts model, with the majority phase cor-
responding to the remaining (q —1) phases. (A~) acts as
a time-dependent magnetic field which prevents the mi-
nority phase from disappearing at T = 0, and keeps the
magnetization constant.

Let us first discuss briefIy the Mazenko approximation
for the Ising model [11]. The order parameter field
P(r, t) changes quite sharply at the domain walls and the
probability distribution of P(r, t) is certainly far from
Gaussian. However, for nonconserved dynamics, where
interfaces move locally while equilibrium is maintained
in the bulk, one can consider an auxiliary field m(r, t)
which is related to @(r,t) via a nonlinear transforma-
tion @(r,t) = o.[m(r, t)]. The mapping function o. is
chosen to be the equilibrium profile of the order param-
eter field and is determined from d o./dm = V'(o.),
with the boundary conditions o.(m) ~ 1 as m ~ ~ and
o.(m) ~ 0 as m ~ —~. The auxiliary field m(r, t) can
then be interpreted as the distance from the nearest
interface and, in contrast to P(r, t), varies smoothly
across the walls. It may then be reasonable to assume
that m(r, t) has a Gaussian distribution.

Since the equation of evolution of the correlation
function Eq. (5) involves only a single field @&, hereafter
simply denoted by P, it is possible to extend the Mazenko
approximation for the usual Ising model to our problem.
However, several important differences from the simple
Ising case must be noted. First, (P) is strictly fixed at

1/q at all times as opposed to the Ising case where,
for a critical quench, (P) =

2 automatically. This also
necessarily implies that the mean of the distribution ofI is nonzero. The first and second moments of the
Gaussian distribution, (m(t)) = m(t), ([m(t) —m(t))2) =
Cp(t) and ([m(t~) —m(t~)){m(t2) —m(t2))) = C(12), must
be determined self-consistently. For example, from the
condition (P(r, t)) = 1/q, we get

1
tr(m) exp[ —(m —m) /2Cp] dm = 1/q.2' Cp

Replacing tr[m, t] at late times by the step function
0(m) (which is 1 for m ) 0 and 0 for m ( 0) and
thereby neglecting terms that are of lower order in t,
we get m(t) = —$2Cp(t) erfc '(2/q), where erfc(x) =
(2/~sr) f, exp( —u~) du. Note that for q = 2, m = 0
as expected. For later convenience, let us also define
the correlation function f(12) = C(12)/QCp(1) Cp(2) and
denote it by f(r, t) when t& = tq = t Note that f(0, t) =.

landf ~0asr
The second important difference from the simple Ising

case is the choice of the mapping function cr[m(r, t), t]
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(6)

G(f) =

1+ fX erf y
1 —f

where p = erfc '(2/q). Q is then implicitly a function
of G. Interestingly, we notice that the form Q(f) =
fBG/Bf is identical to that of the Mazenko equation [11]
for the critical Ising case, with the exception that G( f)
has different expressions in the two cases. However,
this seems accidental because in our problem we need to
invoke a moving frame and therefore a different profile
function satisfying Eq. (6). For q = 2 (c = z, Ising
critical), the velocity of the moving frame da. /dt = m/Co
is zero identically, and our expression then reduces to the
Mazenko results. The scaling form G(r, t) = g(r/L(t))
is a solution of Eq. (7) provided that Co(t) —L(t) scales
linearly with t, giving the expected growth law L(t)—
t'~~ Setting Co = 4t/. ~ for large time, and x = r/L(t),
we get

g d 1 dg+ +x + p, Q(g)=0,
dX X dX

(9)

which defines a closed eigenvalue equation for g. p, has
to be determined by matching the short- and long-distance

The explicit time dependence introduced via (A~) modifies
the local equilibrium profile. In fact, since the mean of
the field m(r, t) is time dependent, one can expect to get
a "sigmoid" shaped solution only in a moving frame,
with a velocity suitably determined to neutralize the time
dependence introduced via (Ai). In fact, this moving frame
follows the motion of the local interface. Thus, making
the transformation r' = r + a(t) n where n is an arbitrary
unit vector and a(t) is to be determined, and demanding
an equilibrium solution, i.e., 8@/Bt = 0 to leading order
in time, we find the appropriate equation for o.[m.t]:

dm~ dt dm

We now fix a(t) from the condition that the average value
on both sides of Eq. (6) should be identical. The average
on the right-hand side is zero by definition of (Ai). The
quantities (d2cr/dm2) and (der/dm) are calculated using
the Gaussian property of m and replacing o.(m, t) by 0(m)
at late times. This yields da/dt = m/Co, implying a(t)—
/CO(r) L(t), which is expected, since, physically, L(t)
is the only length scale remaining at late times. From
Eq. (6), (Ai) —I/L(t), which can be understood on phys-
ical grounds: Local equilibrium of a bubble and its inter-
face requires that the surface tension energy Es —L(t)"
should balance the magnetic energy FM —(A~) L(t)". Us-
ing Eq. (6) in Eq. (5), the expressions for I and da/dt,
and expressing the derivatives of cr with respect to m as
derivatives with respect to f, we obtain [12]

1 BG 1

2 Bt Co(r, t)
= ~'G + Q(f), (7)

where Q( f) = fBG/Bf with G( f) given by

2

p ( 1+f)dyexp —y+ p

behaviors of g(x). A is then related to p, via the relation
A = d —p, /2 [11,12].

In the q ~ ~ limit, it is possible to solve Eq. (9) analyti-
cally. Neglecting terms of O(1/p ) and using erfc(p)—
exp( p2—)/p~vr for large p, we find

1+ f 1 —f
g( f) = erfc p2 1+ f (10)

Then, expressing the function Q in terms of g itself, we find
essentially three regimes. As g ~ I/q (large distance),
Q(g) = g —I/q, and as g ~ 1 (short distance), Q(g) =
p /vr(1 —g). In the intermediate regime, g « g « 1

where g" —In(q)/q, Q(g) = p g/2. First consider the
small x behavior of Eq. (9). Using Q(g) —p~/n(1
g), we find that g(x) 1 —pQp, /vr(d —1) x, the cusp
reflecting the presence of sharp interfaces. This reproduces
Porod's law [13],namely, that the structure factor scaling
function F(y), the Fourier transform of g, decays as

y
i"+'~ for large argument y. For large q, Q(g) = p2U(g)

where U(g) is independent of q, and we define v =
lim~ p, (q) p2. Then the eigenvalue problem can be
solved exactly [12] with eigenfunction g(x) = erfc(x/~2)
and v = 2(d —1). Thus, for large q, p —2(d —I)/p,
where p2 = In(q) and therefore A = d —(d —I)/Inq.
We note that, for d = 1, a direct solution of Eq. (9)
coincides with the exact solution of the q-state kinetic
Potts model [12],with g(x) = (1 —

q ') erf(x) + q
' and

A = 1.
We now compare our results with the direct T = 0 sim-

ulation of the q-state Potts model. We have also simulated
directly our field theory [Eq. (3)] and found that it evolves
in a similar way as the Potts model (see Ref. [12] for de-
tails), with domains growing as L2(t) —t. The determi-
nation of A requires large lattices (especially for large q)
and large numbers of Monte Carlo (MC) steps (typically
10 ) which is easier to achieve in the Potts model simula-
tion. The calculations have been carried out at T = 0 on
an 800 X 800 square lattice with equal coupling to near-
est and next nearest neighbors (NNN's). NNN interac-
tions are needed at T = 0 to avoid pinning to the lat-
tice for q ) 2. It also ensures a better isotropy of sur-
face tension, and thus of bubbles. We optimized the MC
procedure by selecting only surface Potts spins for up-
dating, since only these can be flipped at T = 0. For
q ~ 20, the results for 20—40 samples were averaged,
whereas 10—20 samples were found to be sufficient for
q ) 20, due to smaller lluctuations for L(t) and A(t) with
increasing q, yielding, to our knowledge, the most ex-
tensive simulations to date. We find L~(t) —t for all q,
and observe good scaling of the correlation function. In
Table I, we present the values of A generated in sim-
ulations, and compare them to those obtained from the
(numerical) solution of Eq. (9). We find a reasonably
good agreement. We also note that A from the simulation
saturates very slowly to its q ~ ~ value, as predicted by
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TABLE 1. A for different q as computed from the Potts model simulation and by solving the eigenvalue equation (9) numerically.

1.25 ~ 0.01'
1.289"

10

1.40 ~ 0.02
1.476

20

1.49 ~ 0.01
1.566

30

1.57 ~ 0.01
1.611

50

1.64 ~ 0.01
1.660

100

1.72 ~ 0.01'
1.713

200

1 82 ~ 002'
1.755

1.99 ~ 0.01
2.000

'See also Ref. [9].
bSee also Ref. [11].
'For q that large and the finite samples considered here, the effective q is probably larger and A is slightly overestimated (see
Ref. [12] for more details).

our asymptotic result. For q = 2, and in principle for other
values of q as well, A can be measured experimentally
for systems with the Ising symmetry. For instance, the
authors of Ref. [14] found L(t) —t&, with @ = 0.515 ~
0.026 and A = 1.246 ~ 0.079, compared to @ =

z and
A = 1.286. . . in the Gaussian closure approximation [11],
and A = 1.25 ~ 0.01 numerically [9]. Mean-field or large

1
N approaches also give P = z, but lead to A = d and
A = d/2, respectively [12]. For soap bubbles, q = ~ and
A = 2 (A = d in dimension d). Indeed, the choice q = ~
eliminates the coalescence of bubbles with identical index,
so that A(t) —I /N(t) —I /L(t)d, where N(r) is the number
of remaining bubbles at time t. In Fig. 1, we compare the
correlation function for q ~ as given by the Potts model
simulation, the direct simulation of the field theory for q =
50 fields on a 120 X 120 lattice, and by our approximate
theory, and find good agreement. For soap bubbles, g(x)
measures the probability that the point x belongs to the
same bubble as the origin.

Finally, the correspondence between the correlation
functions of the q-state Potts model and of the Ising model
with a fixed average magnetization (mo) = 2/q —1 shows
that A for the Ising model continuously depends on (mo),
and may be close if not exactly equal to the value of A for
the associated Potts model. This analogy also suggests a
possible experimental observation of A and the correlation
functions for q ) 2, in magnetic bubbles [12,15].

1.00

0.80

0 Potts model

Field theory

Theory

0.60
bQ

0.40

0.20

0.00
0.00

FIG. 1. Comparison of the scaled equal-time correlation func-
tions generated by numerical simulation of the Potts model with

q = ~ (in fact q equals the initial number of bubbles —32000),
numerical integration of Eq. (3) with q = 50, and the large q
analytical result.

We are grateful to D. Huse and M. Seul for stimulating
discussions and useful comments on the manuscript. We
thank ATILT Bell Labs crew for its nice support during
the two past years.

*Electronic address: clement siberia. ups-tlse. fr
~Electronic address: satyacmphys. eng. yale. edu

[1] For a general review, see J.D. Gunton, M. San Miguel,
and P. S. Sahni, in Phase Transitions and Critical Phe-
nomena, edited by C. Domb and J. L. Lebowitz (Aca-
demic, New York, 1989), Vol. 8, p. 269; J. S. Langer,
in Solids Far from Equilibrium, edited by C. Godreche
(Cambridge University Press, Cambridge, England, 1992).

[2] A. J. Bray, in Phase Transitions and Relaxation in Systems
with Competing Energy Scales, NATO ASI, Ser. C,
Vol. 415 (Kluwer Academic Publishers, Dordrecht, 1993);
A. J. Bray (to be published).

[3] F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[4] G. S. Grest, D. J. Srolovitz, and M. P. Anderson, Phys.

Rev. B 38, 4752 (1988); M. P. Anderson, G. S. Grest,
and D. J. Srolovitz, Philos. Mag. B 59, 293 (1989); J. A.
Glazier, M. P. Anderson, and G. S. Grest, Philos. Mag. B
62, 615 (1990).

[5] H. Flyvberg, Phys. Rev. E 47, 4037 (1993); see also
H. Flyvberg and C. Jeppesen, Phys. Scr. T3S, 49 (1991).

[6] J. Stavans, E. Domany, and D. Mukamel, Europhys. Lett.
15, 479 (1991).

[7] J.A. Glazier, S.P. Gross, and J. Stavans, Phys. Rev. A
36, 306 (1987); J. Stavans and J.A. Glazier, Phys. Rev.
Lett. 62, 1318 (1989); J. A. Glazier and J. Stavans, Phys.
Rev. A 40, 7398 (1989).

[8] M. Lau, C. Dasgupta, and O. T. Valls, Phys. Rev. B 3S,
9024 (1988).

[9] D. S. Fisher and D. A. Huse, Phys. Rev. B 3S, 373 (1988).
[10] P. C. Hohenberg and B.I. Halperin, Rev. Mod. Phys. 49,

435 (1977).
[11] G. F. Mazenko, Phys. Rev. B 42, 4487 (1990); F. Liu and

G. F. Mazenko, Phys. Rev. B 44, 9185 (1991).
[12] C. Sire and S.N. Majumdar, Phys. Rev. E (to be

published).
[13] G. Porod, Kolloid Z. Polym. 124, 83 (1951); 125, 51

(1952).
[14] M. Mason, A. N. Pargellis, and B. Yurke, Phys. Rev. Lett.

70, 190 (1993).
[15] M. Seul and Pierre Molho (private communications).

4324


