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Intermittency of Single Molecule Reaction Dynamics in Fluctuating Environments
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Individual activated events in slowly fluctuating environments are now accessible to study by single
molecule spectroscopies. The statistics of such events should exhibit intermittency and will not always
obey the Poisson law. For short times, the high order moments are of the corresponding power of the
average survival probability. For long times, the high order moments decay much more slowly than
the Poisson statistics indicate. A simple example illustrates the ideas when both the environmental
variables relax exponentially or follow a stretched exponential law as in glasses or biomolecules.

PACS numbers: 78.55.Kz, 05.40.+j, 78.50.—w

It has long been recognized that chemical reactions
and activated barrier crossings in condensed phases are
stochastic events. The laws of chemical kinetics are
merely statistical laws describing the average behavior of
populations [1]. It is now possible to measure the reaction
dynamics of individual molecules in the laboratory [2]
so the statistics of reaction events will routinely be
directly tested. When the traditional phenomenology
based on simple rate laws is valid for large populations,
experiments on small number or individual molecules
should give Poisson statistics. For systems obeying
ordinary kinetic laws, the statistics for small populations
have already been confirmed by Weissman, Isaacson, and
Feher [3]. The simple phenomenological laws of kinetics,
however, break down for many reactions of biomolecules
studied on fast time scales or at cryogenic temperatures
[4—6] and for barrier crossing processes in glasses and
spin glasses [7,8]. Generally, the populations do not obey
exponential decay laws. The activation processes also do
not follow the simple Arrhenius law. The study of the
statistics of individual molecular reaction events may help
clarify these mysteries. Here we examine the statistics of
an individual reacting molecule in a glassy environment.

At the level of large populations, the picture of a bar-
rier crossing whose rate depends on a slowly fluctuating
environmental variable has been shown to be an often
adequate characterization of the nonexponential kinetics
usually seen in complex systems. The dynamics of the
fluctuating barrier model itself clearly leads to non-Poisson
statistics for individual molecules. The environmental
fluctuations lead to "intermittency" [9]. This intermittency
rejects the fact that certain rare configurations of the en-
vironment most favor the reaction. The statistics of this
intermittency is different from the normal rare event dy-
namics that gives rise to Poisson statistics. Intermittency
may be characterized by the higher order statistics of the
populations. We will show here how these higher order
statistics can be calculated using a classical path integral
approach [10—12]. These path integrals can be evaluated
using a steepest descent approximation leading to domi-
nant survival paths. We will concentrate our analysis on
a simple problem in which the barrier crossing process

depends quadratically on environmental variables as in

fluctuating bottleneck models of ligand rebinding proteins
(MbCO) [13]. For this model the dominant survival path
method is exact. At short times, the nth order moment is
of the order of the nth power of the population, but at long
times the moments decay much more slowly. It has of-
ten been discussed whether the environment which affects
a reaction is homogeneously fluctuating with multiexpo-
nential kinetics or can be modeled simply as an inhomo-
geneous average over some simple exponentially relaxing
variable. It is difficult to unambiguously resolve this ques-
tion by looking only at the average populations when the
number of molecules studied is large. Here we show that
the higher moments of the population more clearly reAect
the degree of homogeneity of the relaxation focusing on
the case of one single molecule. This analysis suggests
single molecule experiments can resolve one of the more
vexing issues in biomolecular reaction dynamics.

The survival probability associated with a generalized
Langevin equation or Fokker-Planck equation can be
represented as a functional integral over paths [11,12].

For complex systems such as proteins and glasses, a
general Gaussian memory form can be used as a model,

T T

P = exp— r(r)A(r, r')r(r')dr dr' . (1)

A is the usual functional inverse of (r(r)r(r')), the cor-
relation between r's at different times.

We use a stretched exponential form of the correlation
function,

( ( ), ( ')) = 0 p[—(~l — 'l)P],
where A is the relaxation rate and 0 the equal time
Iluctuation. p = 1 corresponds to exponentially relaxing
Iluctuations, while p ( 1 corresponds to the more general
form encountered in glasses and biomolecules [4—7].

We take into account the reaction by recognizing that
the survival probability evolves along any given trajectory
according to the first order kinetic equation,

dP~/dt = —k2t(r(t))Pt + kt2(r(t))P2. (3)
In the above equation Pl is the survival probability of the
reactant or of finding a single molecule, and P2 = 1 —P]
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is the probability of finding no reactant molecule. k~2(r) is
the rate coefficient from product to reactant, and k2~ (r) is
the rate coefficient from reactant to product depending on
environmental fluctuation coordinate r.

We design the following single molecule gedanken
experiment by assuming that the forward reaction rate k»
is fast and dependent on the environmental coordinates.
After the product is formed, it is slowly pumped back
to the reactant and another cycle starts. The backward
reaction is much slower than the forward reaction and
is not distributed (k~2 (( kq~) but does not depend on
environmental coordinates. This is a good approximation
for systemlike MbCO under constant illumination where
dissociation while slow is not distributed. The more
general case where both rates are distributed can be
treated in an analogous but more elaborate way. Under
these conditions, individual jumps across the barrier can
be observed, and, through the bunching of the reaction
events, the high moments of the survival probability are
inferred as described below. This is an idealized situation
set up to make the mathematics simple. More realistic
models can also be studied.

Solving the above equations, we obtain

= exp— k» dt 1 —exp— k» dt

We expect the barrier crossing itself to be ergodic so these
averages can be obtained from a long run on a single
molecule through the assumption of time translation
invariance. One can also measure the two time correlation

P~ = exp — k» dt (4)
0

In a single molecule experiment, the variance of the
number of reactant molecules averaged along a specific
stochastic trajectory can be written as [1]

(n —n)' = n'(t) —n' = P)(t) —P', (t)

function of the number of single surviving rnolecules,

n(t~)n(t2) —[n(t~)] [n(t2)] = P((t2) —P)(t))P)(t 2)

= exp— k» dt 1 —exp— k» dt

(6)

Thus we see that P~(t)~ and P~(t~)P~(t2) can be obtained
from a single molecule's time series.

After averaging () over the stochastic trajectories of the
environments, we obtain for the equal time variance

n2t —nt2 = P] t —
P& t (7)

and more generally

n t] n t2 — n ti n t2 = P] t2 — P] t) P ] t2

Equations (7) and (8) show how the quantities (P&(t))
and (P~(t~)P~(t2)), which are obtained in the path integra-
tion analysis, can be extracted from experimental averages
over individual time series. If the ergodic hypothesis is
valid for the environmental fluctuations, the second aver-
age () can be performed by time averaging Eqs. (7) and
(8) for a single molecule over initial starting time. On the
other hand, this average can also be performed through
multiple runs on different individual molecules. It is not
difficult to generalize this result for higher order statistical
quantities.

The ratios [(P (t))/(P(t)) and(P (t~)P(tq))/(P(t~))(P(t2))]
directly measure the intermittency. If the ratio is large,
the high order moments are dominated by rare events
reflected in the sudden bunching of transitions for a short
period of time followed by abnormally long intervals of
quiescent behavior.

The main result of this paper is to note that the high
order moments of the survival probability can also be

!

calculated using path integrals,

f Dr(r) exp —fo nk2~(r) dr —
2 fo fo r(r)A(r, r')r(r')dr dr'

f Dr(r) exp —
~ fo fo r(r)A(r, r')r(7')dr dr'

Using the steepest descent method we find that the
dominant path equations for the higher moments have the
same form as for the average survival probability except
that the rate coefficient k is replaced by nk [11],

T

r(t) =- dnk»
A (t —t)dt.

p dt'
The paths contributing to the high order moments of the
survival probability are different from those contributing
to the average. Regions of high reaction are even more
strongly avoided.

In general, the best experimental observables to com-
pute from the time series are not the equal time moments,
but the correlation functions at different times. The ex-
periment would be to take the signal at one time and

(P (t i ) . . P (t, ))

= (exp— k» dt —- kgb dt . (11)

We can again use the steepest descent approximation to
find the dominant survival path.

We now study the case where the rate k(r) depends

signal at later time, etc. , average over many correlation
times of the environment and through many reaction cy-
cles. The intermittent behavior is reflected in the multi-
time correlation functions derived from the experimental
data.

The expression for the correlation functions follows:
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mildly on the relaxation variable r. The weak dependence
of k(r) on r is justified for several physical systems,
for example, geometrically gated diffusion in proteins
[13,14], theory of spectral line shapes where k takes on
imaginary values [15], and ionic transport in membrane
channels [16]. Here k(r) is

More generally, when the fluctuating environment re-
laxes exponentially [5], the intermittency ratio is

(P"(t)) P'n't/7r
(P(t))" 4nn + A/8

X exp ntQA + 4n A8 —tv A + 4a' A8n
k(r) = y + Por + nr' (12) —(n —1)At . (14)

The quadratic form of the rate coefficient allows for
an exact path integral calculation. Relevant mathematical
details are given in our previous papers [10,11].

When the environmental degrees are essentially frozen,
or in the very short time limit, it is straightforward to cal-
culate the averaged population and the high order moments
[13]. For a frozen environment, if (P"(t)) is extracted from
an individual long run using the ergodic hypothesis, one
would obtain Poisson statistics. So in the strict static limit,
the ratio between high order moments of the surviving
population should be averaged over many runs on different
molecules, and the average population raised to the same
power, termed the intermittency ratio, is

(P"(t)) (1 + a8t)"t'
(P(t))" (1 + nu8t)'t

2
2 2 n n

X exp poto 4(nut + 1/8) 4(nt + 1/8)

(13)
The results are shown in Fig. 1 where the intermittency
ratios for the first, second, fifth, and tenth order moments
are plotted (dashed line).

The intermittency is clearest for long times, but in the
short time limit this result is valid for all types of Gaussian

fluctuating environmental variables.

(r(t)r(o)) = dA' g(A')e (15)

The distribution function g(A), reproducing a Davidson-
Cole behavior of stretched exponential relaxation, is

sin(vr P) Ao
g A'

A' (A' —Ao)t
(16)

when A' ) Ao and g(A') = 0 when A' ( Ao.

If (P"(t)) is extracted using the ergodic hypothesis
on one single molecule, we would obtain the result
of Eq. (14). On the other hand, if averages are ob-
tained by repeating the experiment on different individ-
ual molecules, we should use the distribution g(A) as the
weight for the inhomogeneous average of the population
klnetlcs,

The results for the first, second, fifth, and tenth order
intermittency ratios are shown in Fig. 1 (solid line).

Consider now the case where the environment relaxes
according to the stretched exponential law in Eq. (2),
with p 4 1. In the inhomogeneously relaxing situation
[6], the environment for each individual molecule relaxes
exponentially, but the correlation function for the whole
population is an average of many single exponentially
relaxing events with an appropriate weight,

(P'(t)) f dAg(A) exp[(pon t/vr)/(4nn + A/8) —t(QA~ + 4nA8n —A)]
(17)(P(t))" (f dA g(A) eXp[(pOnt/7r)/(4~ + A/8) —t(QA + 4tl A8 —A)])"

The results are shown in Fig. 2 (solid line). We observe a drastic change in the intermittency ratios.
Consider now the case where the environment is homogeneously Iluctuating with multiexponential (stretched

exponential with p 4 1) kinetics [4]. Here (P"(t)) can be equivalently obtained either from a single molecule time
series or by averaging over several runs. We find the intermittency ratio

with

(P"(t))/(P(t))" = W(n)/W(1)", (18)

p,'n't/~ ( x,'
W(n) = exp exp —t1 cu,. ln

4nu + A/P8

+ 21

+ 1/P + 4txn8/A
x~ + 1/P

&/2

+ 4n A8n arctan
1 P +4nn8 A'~~

4n8n sin(P~/2)
Ax', +&

+ p p 1 + 2p 4n8n sin(per/2)
'1+ P' 1+ P

' Ax'+~

—2, arctan[p't x,] —x, A ln 1 +

+ 4nOn (19)

where x, is a constant and 2F& is hypergeomeric function. Homogeneous kinetics also show intermittent behavior as
seen from Fig. 2 (dashed line).
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of the population must be solved.

We thank Professor G. U. Nienhaus, Professor H.
Frauenfelde , an ro essore er, Professor M. B. Weissman d P f

are for enlivening discussions. Th is researc was sup-
ported in part by the NSF Materials Research Laborator
Grant No. NSF DMR-89-20538.

0 0.5 1

Time

8-
n=10

6

O
4

0.5 1

Time
1.5

relaxing environment (solid line) and homo eneo
(d hdi

m
en as e ine) versus time are shown.

FIG. 1. The lo arithg rithm of tntermittency ratios log, oR [R =
(p"(t))/(p(t))" ] of order 1, 2, 5, and 10 for the static
environment (dashed line) and for the sin le
relaxin eng environment (solid line) versus time are shown

In general, the average population decays more quickly
for the homogeneous case than for the inhomogeneous
case. The intermittency ratios f hor omogeneous cases
are larger also. The comparison shows the significant
difference between hornomogeneously multiexponential and
inhomo eneous avg average over some single exponentially
fluctuating environment (see Fi . 2) Th
a so from the well known inequality (exp[x]) ) ex [(x)].

Single molecule reaction dynamics allows the funda-
mental statistics ofa istics of a many body environment to be robed
directl . Thy. he formalism developed here quantitatively dis-

o epro e

s an in omogeneoustinguis es the effects of homogeneous and inh
environments on barrier crossing events. For short mea-

cy ra io is of order one.surement times, the intermitten t
For long time, the high order moments decay much more

n w ic rare events cannotslow y, revealing intermittency in h h

not have en
e ignored. The average survival probabilit l di i y a one oes

no ave enough information to uncover these details.

(P(ri)P(&z) . P(& ))
a ion unctions

t2 . . P p t„p g give more dynamical information
than the simple moments (P"(t)). In rinciple one can
obtain the full die u istribution of the surviving population.

n principle one can
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