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Quantum Description of Spherical Spins
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The spherical model for spins describes ferromagnetic phase transitions well, but it fails at low
temperatures. A quantum version of the spherical model is proposed. It does not induce qualitative
changes near the phase transition. However, it produces a physical low temperature behavior. The
entropy is non-negative. Model parameters can be adapted to the description of real quantum spins.
Several applications are discussed. Zero-temperature quantum phase transitions are analyzed for a
ferromagnet and a spin glass in a transverse field. Their crossover exponents are presented.

PACS numbers: 75.10.Jm, 05.30.—d, 05.50.+c1, 75.10.Nr

The spherical model was introduced by the late Mare
Kac; see [1] for a discussion on its history and the route
to its solution, presented by Berlin and Kac in 1952
[2]. It was meant to be a simple soluble example for
spin systems, from which the behavior near the phase
transition can be studied in a simple manner. A review
of this subject was given by Joyce [3].

The model also has a drawback: the behavior in the
low temperature phase is pathological. The specific heat
is just constant, while the entropy goes to minus infinity
as S —ln T. These aspects even occur for free spherical
spins in a magnetic field. For these reasons the practical
use of the spherical model has been limited.

We have wondered whether the low-T behavior can
be healed by modifying the spherical model. We have
considered the definition of spherical spins in a standard
thermal field theory. We report our findings here.

We consider spins coupled ferromagnetically to nearest
neighbors in the presence of a field

A = —J gs;SJ —H QS;. (1)
&) l

The S; are m-component variables. We shall mainly
consider m = three-component vector spins. The spins
are subject to the spherical constraint

N—Ps,' = a. (2)N,
Later we will specify o-. The classical partition sum reads

Z = Dse-~~, (3)

where DS = 6(g, , S; —Na) P;[ds;/(2m) ~~). For
free spins (J = 0) in a field, one finds the free energy

F= — + InPp, —po mT H
2 2 2p

(4)

The magnetization is M = H/p, Variation with respect.
to the "chemical potential" p, yields the equation of state
M2 = a —mT/p, . It can be solved explicitly:

(5)mT+pm T +4aH
The susceptibility, g = o/mT, follows a per. fect Curie
law. In fixed field the magnetization goes to ~o. as

T ~ 0. However, the entropy goes to —~ as (m/2) lnT
for T 0. This is in convict with the third law of
thermodynamics, but occurs always for classical vector
spins. The specific heat C = TdS/dT goes to a constant.

We wish to improve this low-temperature behav-
ior. If we return to Eq. (1) at H = 0 and denote
the eigenvalues of the coupling matrix by A, we ob-
tain Z —max~ exp(NmP p, /2) [jq[P(p, —A)]
analogy with harmonic oscillators, we expect that
the term P(p, —A) arises from a quantum expression
sinhaP(p, —A). Such a factor can indeed be derived
when no square root occurs. We therefore propose two
ways to quantize the spherical model. If spins are real
valued, the quantization must be defined for Z~. This
is reminiscent of the solution of the 2D Ising model,
where Z can be evaluated with Pfaffians, while Z can be
expressed in terms of Grassmann integrals. If the spins
are complex, the quantization can be defined for Z itself.

For real valued spins, one doubles its components.
One thus considers spins S,'(r) (a = 1, 2) defined on an
"imaginary time" interval 0 ( r ( p, subject to periodic
boundary conditions S,'(P) = S,'(0). In units where 6 =
1 the square of the partition sum reads

Z2 = X)S exp
N 2

dr g g S(r) ob S (r)
4Q ~

i b i d7

—P w([s;(.)~),

where the r integral is discretized [4] in 3H = P/dr steps
and dS(r) = S(r + dr) —S(r). The two spin systems
are coupled by the Pauli matrix in the derivative term,

(2) (2) . (2) (2)viz. , o2i = —oi2 = i; oil = o-» = 0. The integration
measure is a normalization constant times the repetition of
the spherical measure at all imaginary time points, 23S =
C g, , DS'(r) with C = (I/2a) P„~o(rr)n)/2n).

The quantum term in (6) involves a first-order
derivative in time. Our motivation hereto was that
d-dimensional quantum spin systems, such as the Ising
chain in a transverse field, involve such a term due to the
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For large T, p, grows linearly, p, = (y/n) T with cothy =
o./mn. The susceptibility follows the Curie law g =
1/p, = n/yT. The entropy reads

I
S = —(n P p, cothn P p, —ln2 sinhnP p, ) .

2

Whereas in the classical model there was no unique way
to define its adjustable constant, we have chosen it here
such that, in a finite field, S vanishes at T = 0. In
the classical limit n —A, ~ 0, one might be tempted to
neglect the term —(m/2) inn. It is exactly this procedure,
however, that produces a negative classical entropy.

In zero field, or at infinite T, the entropy becomes

—ln2 sinhy (10)

Trotter-Suzuki transformation into a classical (d + 1)-
dimensional problem. In the course of this work we
became aware of spherical models with a second-order
derivative [5]. For magnetic systems that term does not
lead to a vanishing energy gap at zero field.

In order to fix some universal properties of the system,
we consider again free spins in a field. At each ~ we
introduce a Lagrange multiplier p, (r) for the spherical
constraint. The mean field value occurs for constant p, .
If the thermodynamic limit N ~ is taken before the
limit M ~, the fluctuations do not yield extensive
contributions W.e thus find simply, instead of Eq. (4),

po IT HF = — + ln2sinhnpp, —
2 2 2p,

Variation with respect to p, now yields

H = o. —mn cothn p p, .

one has to solve

(JOM + H)2

2p

When M 4 0 in zero field, one has p, = Jp and

(13)

M = tr —n m cothn P Jo . (14)

At the phase transition M grows as (T, —T)p with critical
exponent p = 1/2, as in the classical description. The
entropy in the ordered phase,

(5+ 1)y
5+ (S+ 1)y

This equation has a solution for any positive S. We find
the values, presented in Table I. For large S, cr is close to
5(S + 1) + 1/3, while n = S/3 + 1/9. The energy gap,
AE/H = 2/3 + 2/9S, is below the value AE/H = 1 of
spin-5 quantum spins, but it is bounded by 2/3.

In Fig. 1 we present the specific heat of a free S = 1

spin with the values of o. and o. taken from Table I. It
is compared to the "classical" result (same o. ; n 0),
which goes to 3/2 at T = 0. We have also presented
the specific heat of a S = 1 quantum spin, viz. , C =
(PH/2 sinh(PH/2)]2 —[3PH/2 sinh(3PH/2)] .2This ex-
pression vanishes quicker at small T, since it has a larger
gap than our result for the free spherical spin.

Having fixed the system parameters, we can now
consider coupled spins. The first case is the mean field
ferromagnet, Eq. (1), with the sum involving all pairs.
We denote Jp = NJ. The free energy reads

p CT PlT JpM
2 2

+ In2sinhnpp, +
2

The zero-point magnetization Mo = Qtr = mn exhibits a
quantum reduction from the classical value ~o.. Equa-
tions (7) and (9) exhibit an energy gap AE = 2npo=.
2nH/Mo This is indeed . expected for free quantum spins.

We now wish to see how far our spherical model can be
used to describe realistic quantum spins. In our definition
of the thermal field theory we had two parameters, the
length o- and a —6 =— 1. We can fix these parameters
by comparing them to two expressions from the high- and/
or low-temperature thermodynamics of free spins. Let
us therefore consider quantum spins of order S where
5 = 1/2, 1, 3/2, . . . is half-integer or integer. Our field H
is the product of the external field Hp, the g factor, and the
Bohr magneton p, &, viz. , H = gp, pHp. For free quantum
spins the susceptibility follows a Curie law

g paS(5 + 1)
A'p = g PgA' = (11)

This law is reproduced by our model with I = 3 if
tanh3n/5(S + 1) = 3n/o. . We can find a second con-
straint by adjusting the zero-point magnetization to Mp =
S. This implies o. = S + 3o. . Combining these relations

2
[n P Jo(cothn PJo —1) —ln(1 —e PJ')],

TABLE I. Parameters of the spherical model.

1/2
1

3/2
2

5/2

7/2
4

9/2
5

Mo

1/2

3/2
2

5/2
3

7/2
4

9/2
5

0.23797
0.41881
0.59213
0.76269
0.93192
1.10041
1.26842
1.43614
1.60365
1.77100

0.96392
2.25643
4.02639
6.28807
9.04576

12.30121
16.05528
20.30843
25.06096
30.31300

AE/H

0.95190
0.83762
0.78950
0.76269
0.74553
0.73360
0.72481
0.71807
0.71273
0.70840

vanishes exponentially at low T. A similar behavior
occurs for Ising spins with mean field couplings, since
the latter just act as an external field of adjusted strength.
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FIG. 1. Specific heat of a free spin. Curve a, quantum
spherical model; curve b, classical spherical model; and curve
c, quantum 5 = 1 spin.

FIG. 2. Specific heat of 5 = 1 spherical spins on a simple
cubic lattice: classical versus quantum situation.

It is known that the spherical spins behave differently
in the case of short-range ferromagnetic interactions. In
d dimensions one finds

F= — +po mT

2 2
k
„ ln2 sinhn P [p —J(k)]

2m "

2(p —Jo)
' (16)

where Jo = J(k = 0). Our quantum formulation brings
no qualitative changes near the phase transition. One
still has P = 1/2, g = 0, while also the other exponents
are unchanged. However, near the transition the low-
temperature branch of the specific heat is linear rather than
constant. At low T the excitations are spin waves. Their
degeneracy is m, and not m —1, because, apart from the
direction, the length of the spins can also fluctuate. The
entropy and the specific heat decay as mT ~ at small T.
In Fig. 2 we present a plot of the specific heat for 5 = l
spherical "Heisenberg" spins on a simple cubic lattice,
with o. and o. taken from the table. It is compared to
the classical result (n = 0).

Another case of interest is when only the z components
of the spins have an exchange coupling. The field may
have a component in the transverse direction; a well-
known example is the Ising chain in a transverse magnetic
field. For m = three-component spherical spins, one
finds the free energy

F = — + — ln2 sinhn P [p —J(k)]
po. T ddk

2 2 (2m-)d

Hi H+ T In2sinhnPp-
2p, 2(p, —Jp)

In a perpendicular field it leads to the equation of state
ddk

M, =o- —n (2')" cotha P [p —J(k)]

H~—2n cothn P p, —
p

For d ) 2 a phase transition occurs where M, 4 0. The
ordering is suppressed when H& is large enough. At
T = 0 there occurs a quantum phase transition at critical
field Hg = JpS. Generally, there is an energy gap,
2nH, /M, ; it vanishes only in the ordered phase at zero
field. There is a scaling region when 5 = JpS —Hg,
H„T, and PH, /M, are small. Here the singular part
of the free energy and the order parameter assume the
scaling form F„„g = 624~(x, y), M, = b, '~ 42(x, y) with
x = lH, l&" /6, y = iTi~'/6 with crossover exponents
@H ——3/2, Pz. = d/2. At nonzero H, and very small T
the thermal excitations experience the gap.

A further subject of interest is the limit of strong
anisotropy for Heisenberg spins. For considering the
uniaxial limit where the spins point in the z direction
(Ising-like), we add an anisotropy term

W,„, = ngs, ', + s,',

l
o- ——ln2 sinhy .

2A 2
(20)

This is below the isotropic value, as it should be.
In systems with XY spins, the z component of the spin

is suppressed. Adding a term Dg, (S;, —n) we again
find Eq. (16) with m = 2, provided we take o. ~ o. =

Next we investigate quantum effects in the mean field
spherical spin glass. This system is described by Eq. (1)

to the Hamiltonian. For large D the free energy reduces to
Eq. (16) with m = 1, provided we subtract the "zero-point
energy" 2aD and make the shift cr cr = cr —2n. Un-
der these modifications we can fully neglect the orthog-
onal degrees of freedom. The zero-point magnetization
remains equal to Mp = S. When first D ~, the T = ~
entropy reduces to
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explicitly. The order parameter function has a unique
shape at all T. In the classical description this model
has again the unphysical low-temperature effects of the
spherical model. As, to our knowledge, it is the first
spin glass model with infinite order replica symmetry
breaking for which the whole low-temperature phase has
been solved exactly, it is an important question whether
quantization using Eq. (21) then leads to a physically
acceptable behavior at low temperatures. It could indeed
be shown that the entropy vanishes at T = 0. In fact, both
entropy and specific heat again vanish as T-'/ at low T.

In conclusion, we have discussed a quantum description
of the spherical model. For real spins we quantize Z, for
complex spins Z itself. The low temperature behavior is
physical. Free spins in a field behave at low T indeed
as quantized objects. The same occurs in the case of
mean field couplings, since they lead to an effective
field. For short-range couplings the excitations are spin
waves. In systems with uniaxial couplings, the order will
be suppressed in a large enough transversal field. The
behavior near zero-temperature quantum phase transitions
is analyzed. Also, uniaxial (Ising-like) and easy plane
(XI' spins) systems can be described in appropriate limits.

There occur two system parameters that can be adjusted
to describe the correct Curie law at large temperatures
and the correct zero-point magnetization of real quantum
spins. It is hoped that the spherical model can now be
used in practical situations.

It is a pleasure to thank Mare Kac for inspiring lectures,
and Bernard Nienhuis, Eduard Brezin, and Mark van
Rossum for discussion. This works was made possible by
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where now for each pair the coupling J;, is an indepen-
dent Gaussian random variable with average zero and
variance J2/N T. he model was introduced by Koster-
litz, Thouless, and Jones [6], and extended to the situ-
ation with short-range ferromagnetic interactions by the
present author [7]. In zero field the quantum free energy
is given by Eq. (16), provided we replace Id"k/(2~)" by

JdJ 4J2 —J2/2' Jz, involving the semicircular eigen-
value density of the random coupling matrix. There is a
phase transition where p, sticks at 2J2. Here the Edwards-
Anderson parameter q becomes nonzero. At low T the
entropy and specific heat now vanish as T ~ . In this mean
field model there is no gap.

For a spherical spin glass with couplings only in the z

direction, we can again look at the effect of a perpen-
dicular field, while H, = 0. We find a similar analog
of Eq. (17), while in Eq. (18) q should replace Mz. At
T = 0 there is a quantum phase transition for Hg = JOS,
where the spin glass order is suppressed. In the disor-
dered phase 6 ~ 0, there is again a gap. In the regions
where the gap vanishes or can be neglected, the singular
part of the free energy and the order parameter have the
scaling form F„„s= 6 4'i(T~l /3), q = 54i2(T l /6).

For complex valued spherical spins we consider the
thermal partition sum [4]

P
dr P S,*(r) —9f(S;(r))4n

DS expZ =

(21)

with 23S = C~ P, DS(7.) and DS = 6(2No-.
g; S; S;) P;(dS; dS;/27r) being the spherical measure
for complex spins. The Hamiltonian now reads

A = ——J gS, S, —H g(ReS; + ImS;) . (22)
L,J l

We find the same results as above, provided we identify the
magnetization M with (—1/2) t)F/BH Other couplings .to
the external field or interpretations of the magnetization
lead to quantitative differences that have no natural scaling
for large S.

So far all models discussed have Gaussian properties
since spins are coupled either in pairs or to an external
field. However, in Ref. [8] we have also allowed for
additional random couplings between quartets of spins
and possibly higher spin multiplets. It was found that
in this situation replica symmetry is broken. Near the
phase transition there appears a very close analogy with
the SK model [9] for the mean field Ising spin glass. The
replica symmetry breaking solution could be evaluated

[1] M. Kac, Phys. Today 10, No. 10, 40 (1964).
[2] T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
[3] G. S. Joyce, in Phase Transitions and Critical Phenomena

2, edited by C. Domb and M. S. Green (Academic,
London, 1972).

[4] J.W. Negele and H. Orland, Quantum Many Particle-
Systems (Addison-Wesley, New York, 1988).

[5] Y. Tu and P. B. Weichman, Phys. Rev. Lett. 73, 6 (1994).
[6] M. Kosterlitz, D. J. Thouless, and R. C. Jones, Phys. Rev.

Lett. 36, 1217 (1976).
[7] Th. M. Nieuwenhuizen, Phys. Rev. B 31, 7487 (1985).
[8] Th. M. Nieuwenhuizen, preceding Letter, Phys. Rev. Lett.

74, 4289 (1995).
[9] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35,

1972 (1975).

4296


