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Exactly Solvable Model of a Quantum Spin Glass

Th. M. Nieuwenhuizen

(Received 20 July 1994)

A mean-field spherical model with random couplings between pairs, quartets, and possibly higher
multiplets of spins is considered. It has the same critical behavior as the Sherrington-Kirkpatrick model.
It thus exhibits replica symmetry breaking. The order parameter function is solved exactly in the whole
low temperature phase. The zero-field-cooled susceptibility remains finite at low T. Next a quantum
version of the system is considered. Whereas the magnetic properties are not altered qualitatively, the
thermodynamics is now regular at small temperatures.

PACS numbers: 75.10.Nr, 75.10.Jm, 75.40.Cx, 75.50.Lk

The phenomenon of spin glasses has generated a major
new field of research. The basic phenomenon is breaking
of ergodicity. This leads to highly nontrivial properties as
observed recently, e.g. , in aging experiments [1]. The best
known spin glass model was formulated by Sherrington
and Kirkpatrick (SK) [2]. Its solution was presented by
Parisi; see Ref. [3] for a review. It gave a description of
ergodicity breaking in terms of overlaps. For more recent
reviews on spin glasses, see Refs. [4—6].

The spherical model has always played a special role in
understanding the basic phenomena of phase transitions.
It was introduced by the late Mare Kac and solved by
Berlin and Kac [7]. It constituted a simple model for
studying critical behavior; see Ref. [8] for a review.

The spherical random bond spin glass was studied
in Ref. [9]. It shows freezing but no replica symmetry
breaking. This model was extended by the present author
to include short-range ferromagnetic interactions [10].
The spherical model with random couplings between p
spins was studied recently by Crisanti and Sommers
(CS). For p ) 2 it was found that there occurs a one-
step replica symmetry breaking [11]. Dynamical aspects
of this transition were studied in detail [12].

For Ising spin glasses the Parisi solution is known
explicitly near the spin glass transition. In the frozen
phase the solution has been put in the form of a stochastic
differential equation, for which no explicit solution is
known. As a model solvable in the whole low temperature
phase, we propose here a mean-field spherical model with
random couplings between pairs, quartets, and, possibly,
higher multiplets of spins. In contrast to previous spherical
models, where only one type of these couplings occurs,
the model belongs to the universality class of the Ising
spin glass. We shall derive the explicit form of the order
parameter in the low temperature phase. Then we shall

The J's are independent Gaussian random variables with
average zero and variances (J,„,..., ) = (p —1)!J„N'
The spins are subject to the spherical constraint g; S;
No. . The classical partition sum reads

Zcl (2)

where DS = 8(g, , S; —No)g;(dS;/~v. r). The ther-
modynamics of this model with only one of the p terms
was worked out by CS. In a replica formulation of the av-
erage partition sum, it was found that the free energy only
depends on the overlap q p

= (1/N) g, , S; S; . This re-
sult has to be summed over p. We introduce

f(q) = P —J„'q",I 2 (3)
p=2 P

and we obtain a replicated free energy
n n

2PF„= —P g [f(q p) + H q p] —Ponq) —n.
a,p=l

If J2 = 0 the model has the one-step replica sym-
metry breaking solution studied by CS. When
J2 ) J2 (J3 J4, . . .) is large enough, a continuous transition
will take place. From now on we assume that this is
the case. In Eq. (4) the diagonal terms q = qd also
occur; in the classical situation they are equal to qd = o-.

Expanding in off-diagonal elements q p one obtains

consider the recent quantum formulation of the spherical
model [13]and study its low temperature behavior.

Consider a system with N spins with random couplings
between sets of p spins. The Hamiltonian reads

J;„,...;„S;,S;, . S;, —HgS, .
P=2 il &i2«" iz

2pF„= —n(1 + Inqq + p f 1Hz) + p H q~) —p H g q p
——

(p 2z —
2 p q

gd
1 22 /4

3 q PqPyqy P J3 q p P J4 q p +
3qd ~p~ 3 4

(5)
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where the primes indicate exclusion of diagonal terms.
In the case J3 = 0, but J4 ) 0, this is exactly the relevant
part of the free energy functional of the SK model [14,15].
The model thus belongs to the same universality class,
and exhibits replica symmetry breaking. This continuous
transition sets in at TG = J2qd = J20.. For J3 ) 0 the
model belongs to the universality class of the random
bond Potts model. When the J~ ) J2 and the next
nonzero term is J„ for some p ) 4, the model belongs
to a new universality class. We shall not consider such
situations here and assume J2 ) J2, J3 = 0, and J4 ~ 0.
The higher couplings are only relevant well below TG.

We express the q p in the Parisi function q(x). It takes
the plateau value q& for x~ ( x ( 1. In an external field
it also has a plateau value q(x) = qo for 0 ( x ( xo. The
inverse function is x(q). Using the expressions of an
appendix of Ref. [11], we obtain the explicit expression
for the classical free energy

1

2PF.~

= —P' dx( f(qd) —f(q(x)) + H qd
—H q(x) t

where

dq

/(q)
—ln(q, —q, ) —1,

ql

I(q) = qd
—qi + x(q') dq' .

The saddle point equation for q(x) reads
q(x)

P'f'(q(x)) + P'H' = I 1

J(q')~
'

In the region where q'(x) 4 0, one has P f"(q) = &(q)
It follows that x(q) has a universal shape at all T

fIII (q)
2(f"(q)P" '

which gives q(x; T) = q(px) after inversion. In an exter-
nal field H, the plateau value qo follows from

phase. The breakpoint x& = 2a Tq~ vanishes both near
the critical temperature and near zero temperature.

In an external field the freezing transition is given
by the de Almeida —Thouless (AT) line [16]. Here the
replicon mode [15] becomes massless. We propose to
give this mode the more physical name ergodon. The
critical field where this occurs, Hr„(T), is obtained by
inserting qo = qi(T) into Eq. (10). Note that Hf, remains
finite at T = 0.

In the high temperature phase the susceptibility follows
the Curie law g = Pqd. The zero-field-cooled suscepti-
bility reads

xzFc 0 (qd q i ) ~f //[ (7 )]
It remains finite at T = 0. This is usually observed exper-
imentally. However, the SK model predicts a vanishing
value at T = 0 [17]. The field-cooled susceptibility

(14)

]. =1
dx[qd —q(x)] =—

J2
(15)

is constant in the frozen phase, in good agreement with
experiments. The internal energy and the entropy read

dq f"(q).

1 1For small T one has S,~
=

4
—

4 InP f"(q~). As usual
for classical vector or spherical spins, it goes to —~ as
T 0. This also implies that the specific heat goes to a
constant, C ~ 1/2, at low T. For the case o. = 1/2 with
pair and quartet couplings (J2 = 1, J4 = 2), the specific
heat and the entropy have been plotted in Fig. 1.

We have wondered whether the anomalous low temper-
ature behavior of our model can be cured. In order to do
so, one should regularize the low temperature behavior of

U.i
= P[f(qi) —f(qd)] + f'(qi)

4f"(qi)

2S,)
——P [f(qi) —f (qd)] + + 1 + ln(qd —

q&) .2 Pf'(qi)
Qf"(qi)

(16)

H' = qof"(qo) —f'(qo)

This condition is independent of T. q& follows from

(10)

T

Qf //( )
Of special interest is the case where the couplings J~

are such that
0.5

f(q) = J~ —ln
4a 1 —aq

(12)

for some a in the range 0 ( a ( 1/o. . In zero field one
finds q(x) = (PJ2/2a )x for 0 ( x ( xl and

2(qd J2 —T)
q&

=
J2 + Jq —4a T(qd Jz —T)

-0.5
0.0 0.5 1.0

Note that here the order parameter function q(x) is
either linear or constant in the whole low temperature
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FIG. 1. Specific heat and entropy as a function of temperature
in the classical model. The arrow marks T&.
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the spherical model in general. This can be done by going
to a description of spherical spins in a standard thermal
field theory for bosonic quantum spins [13]. The situa-
tion becomes simplest when the spins are complex valued
and couplings are Hermitian. For the case of random pair
and quartet couplings we now assume the Hamiltonian

1 ~ 196=-——g J;,S,*S, — g J;;g(S,*S,Sq S(
i j i j,k, l

—H g(ReS; + ImS;). (17)

For each pair (i, j) there are now two independent
random variables, J' and J", with average zero and
variance J2/2N, in terms of which J;, = J,;

= J' + iJ".
For each quartet (i, j, k, l) with i ( k, j ( l there are
four independent random variables, J)2 and JI'2, each
having average zero and variance 9J4/2N3. In terms
of J& z = JI q + iJ&'2, the couplings in Eq. (17) read
Jj'kh: Jj 'ik: J& + iJ2 and Jj'ik: Jj 'kI: J] iJ2. The
thermal partition sum involves spins on the imaginary-
time interval 0 ( r ( P

X)S exp
N

dr $ S,*(r) S;(r)
40.'; ) d T

with boundary conditions S, (P) = S;(0). The r axis is
discretized in 3H = P/dr steps, with first N ~ and
then 3H ~ ~, while dS(r) = S(r + dr) —S(r) The in-.
tegration measure is a repetition of the spherical measure
at all r, DS = C~P, DS(r), where DS = 6(2No-.

S,
* S)II;( dS,

*
dS; /2') is the spherical measure for com-

plex spins and C = (I/2n)II«o(7r~n~/2n).
For a ferromagnet Eq. (18) leads to similar critical

behavior as the classical spherical model. However, the
entropy is non-negative and vanishes at T = 0. The zero
point magnetization, Mo = Qo. —a, shows a quantum
reduction from the classical value Mo = ~sr [13].

Here we wish to see whether the low temperature
behavior is also cured for our spin glass model. We
therefore extend the Crisanti-Sommers approach to ther-
mal fields. We introduce a "Fermi level" p, (r) re-
lated to the spherical constraint at imaginary time
and overlaps q p(r, r') = (1/N) P; S, (r)S, (r') We look.
for time-invariant solutions where p, (r) = p, and where

q p(r, r') = g, q p(e) exp(2~tnT(r —r')) with bosonic
Matsubara frequencies e —= 7rnT/2a. In the high tem-
perature phase at zero field only the q (e) are nonzero.
We shall denote qd —= q (c = 0), which now becomes
a smooth, increasing, strictly positive function of temper-
ature. The spin glass temperature TG is the solution of
the relation T~ = J2qd(TG). Here the off-diagonal ele-
ments q p(e = 0) become nonzero; since TG ( o., this
occurs below the classical transition point. The q p(e)
with e 4 0 are always equal to zero [18]. For e 4 0 we

set p, —= Pq (e) and find that the full free energy reads

F = 2F,)[q(x); qd j + F,(qd, p, ; p, ), (19)

+ P p, (qd —cr) + ln2n, (20)

where terms with all e; equal to zero are excluded; they
occur already in F,]. In the quantum situation qd, p„
and all p, have to be treated as additional variational pa-
rameters. For large temperatures one finds p, = Ty/n,
qd = n/y, p, = I/(p, + 2ie), with tanhy = u/cr. The
entropy S = yo. /a —ln2sinhy agrees with the result in
the situation without interactions [13]. Only in the clas-
sical limit n ~ 0 does one recover the previous relation

qd = o.. Therefore, the susceptibility g = qd(T)/T has
been reduced from its classical value at any T.

First consider the situation where only pair couplings
occur, J4 = 0. This case, where no replica symmetry
breaking occurs, is exactly solvable since only Gaussian
integrals occur. The free energy may be expressed as

dip(A) ln2 sinhaP(p, —A) . (21)

Here p(A) denotes the semicircular density of eigenvalues

of the coupling matrix J;, , viz. p(A) = 4J2 —A2/2~J2.
Alternatively we can solve the p, from Eq. (20). They

read p, = 1/[2p, + ie + (zp, + ie)2 —J2] with p, =
2J2 in the condensed phase. When expanding the ln sinh
in Eq. (21) as an e sum, we find a term-by-term agreement
with Eq. (20). It is clear that So = 0, showing that
our quantum formulation indeed regularizes the low-T
anomaly of the entropy of Ref. [9]. The entropy and
specific heat now behave as S —C —T ~, related to the
square root singularity of the semicircular law at A = 2J2.
This describes gapless excitations. In contrast, the mean-
field quantum spherical ferromagnet does have a gap [13].

When also quartet couplings, and possibly higher
couplings, are present, replica symmetry is broken. The
entropy at low T can be obtained by analyzing the
continuum limit of the equations for p, . Details of this
derivation will not be presented here. It turns out that the
same behavior occurs, S —T ~, C —T ~ .

Figure 2 presents the specific heat and entropy for n =
1/4 in the situation of Fig. 1, cr = 1/2, J2 = 1, J4 = 2.

In conclusion, we have presented a set of models where
the order parameter function can be solved exactly in the
whole low temperature phase. The critical behavior is
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where F, ~
is the free energy given by Eq. (6) with f(q) =

J2q /2 + J4q /4. [The factor 2 in Eq. (19) arises since
now spins are complex. ) The quantum correction equals

2

pF, = — —p, + 1 —(p, + 2i e)p, + ln2iep,
J2

@@0
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model, a closed set of equations will occur that bear
the same physics as the more complicated set of the SK
model.
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work was done. This work was made possible by the
Royal Dutch Academy of Arts and Sciences (KNAW).
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FIG. 2. Specific heat and entropy in the quantum model.

exactly the one derived by Parisi for the SK model. As
compared to that model, the solution is explicit for all
T. It is shown that the order parameter function has a
universal shape in the whole low temperature region. The
breakpoint x~ is small near the transition and near T = 0.
Well below TG states with very different overlaps, and
very different nature, occur.

We have also considered a quantum version of the
model. It is seen that the shape of the order parameter
function is not changed. The low-T divergency of the
entropy in the classical model is eliminated. Now the
entropy and specific heat vanish as T ~ .

It is interesting to point out that the magnetic properties
of the model, such as q(x), gzFc, and gFc have not
changed qualitatively in the quantum description. The
only relevant difference is that the self-overlap qd has
become a smooth function of T. In our model yzFc
remains nonzero at T = 0. This disagrees with the
SK model, but is very often observed experimentally.
Another new aspect of our model is the boundedness of
the critical field below which freezing takes place. For
nonzero field one has in the frozen phase M(H, T) =
H/Qf"(qo) = M(H) and S(T, H) = S(T) Therefore, the.

Parisi-Toulouse hypothesis is satisfied [19].
It is hoped that the proposed model can be used as

a basis to explain experiments. To this end, inclusion
of ferromagnetic couplings and extension to vector spins
seems of great interest. In a dynamical study of the
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