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Kohn’s Theorem and Correlation Functions for a Fermi Liquid
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In this paper we derive Kohn’s theorem and calculate the spin and current response functions for a
Fermi liquid. A magnetic weight is introduced as the limit w/g — 0 of the spin response function in
analogy to the superfluid weight recently introduced by Scalapino and collaborators. It is conjectured
that in this limit both the magnetic-ordered and the Fermi-liquid spin response functions have the same

value.
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The correlation-induced metal-insulator (M-I) transi-
tion has received considerable attention recently [1,2].
This is driven in part by the broad spectrum of strongly
correlated electronic materials that undergo a M-I tran-
sition when some parameter, e.g., pressure, temperature,
doping, etc., is varied. Some examples of these materials
include the vanadium oxides, e.g., V,03 [3], the heavy-
fermion (Kondo) insulators, e.g., Ce;Bi4Pts, strontium-
doped La, ,Sr,TiO; [4], and the high-temperature
superconductors, e.g., La,_,Sr,CuOy4 [5]. The
correlation-induced M-I transition observed in these
materials is usually a phase change that occurs in the
absence of an order parameter or an onset of some long
range order associated with the transition.

Without an order parameter to characterize the transi-
tion between the conducting and insulating phases of a
pure material, some other criteria are needed. As argued
by Kohn [6] the Drude weight (or charge stiffness), D, =
lim, o wo"(w), where w is the frequency and o’ (w) is
the imaginary part of the conductivity, can be used to dis-
tinguish between these phases. For an insulator D, is zero
and in the conducting state D, is nonzero. When the con-
ducting state is a pure metal it is necessary for D, to be
different from zero; however, this is not sufficient to dis-
tinguish it from a superconductor. This point has been
discussed in great detail by Scalapino, White, and Zhang
[7]. One of the important conclusions of these papers [7]
is that two distinct limits, as a function of both the mo-
mentum transfer q and w, of the current-current response
function, x;j(q = 0,w — 0) and x;j(q — 0,w = 0), the
latter related with the optical conductivity, are sufficient
to distinguish between the superconducting, metallic, and
insulating phases of a pure electronic material.

One of the other key results, which is due to Kohn
[6], is the fact that the Drude weight is a ground state
property, since it obeys the relation 92E(A)/dA%|a—g =
lim,—o wo"(w) = D., where E(A) is the energy density
in the presence of a vector potential A, suchthatV X A =
0 and 9A/dr = 0. This has proven to be a valuable tool,
since a number of exact analytic as well as computational
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techniques are better suited for determining ground state
properties [7—-9]. However, some care must be taken
when computing the second derivative of E(A). As noted
by Scalapino, White, and Zhang [7], unless one can
follow adiabatically the ground state as the system size
is increased, the order of differentiation and the large
volume limit give different results for dimensions d > 1.

What we show in this Letter is that Kohn’s original
formulation of the theorem applies to a Fermi liquid,
in spite of it being three dimensional (d = 3). We
compute the second derivative of E(A), which had not
yet been evaluated for a Fermi liquid, and relate it to
known results for o(w). We also calculate the analogous
quantities in the spin channel, the spin “Drude” weight
(spin stiffness) D, and the magnetic weight Ds;. These
are defined in terms of the two limits of the spin-
current-current response function y; . (q, ) and a relation
similar to Kohn’s theorem 02E(A)/9dA%|a—q = D, [8]
holds in the spin channel provided we define a convenient
spin-dependent vector potential as explained below. We
close with some discussion of the various instabilities,
superconductivity, spin-density waves (SDW), and the
metal-insulator transition.

To demonstrate the validity of Kohn’s theorem for
a Fermi liquid, we first compute the change in the
energy density 6 E(A) to second order in A. The standard
expression for SE, first introduced by Landau [10-12],
can be written as

1 oo’
SE = eVony, + 3 D e Snpednger, (1)
po P

p'oo’

where el(,(g is the quasiparticle energy, &np, is the
change in the momentum distribution function, fggf/ is
the quasiparticle interaction, and the volume is set to
1. We consider the change in the energy density in the
presence of a spin-dependent vector potential A,. From
this we obtain both the charge and spin stiffnesses. For
the charge case we have that A; = A] = A and for the
spin case we have A; = —A| = A, where in both cases
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V X A =0 and dA/dt = 0. This ensures that we have
no magnetic 2 and electric £ fields present. In principle, if
R = 0 and £ = 0 then there is no change in E. However,
we can imagine that we turn the vector potential on very
slowly (adiabatically) such that 0A/dr = £ for t+ < 7 and
0 for ¢+ > 7, where 7 is a time scale that is longer than
any relaxation time in the problem. While the vector
potential is being adiabatically switched on, there is an
electric field that shifts the whole Fermi sphere by an
amount p — p — A,, where we have set ¢ = | and e =
1. We consider T = 0, the temperature limit for which the
Landau ansatz becomes exact. The scattering due to the
presence of impurities is neglected, since it is a dissipative
process and we are interested here only in the reactive
part of the conductivity. Expanding dnp, = np—a, — nl(aol)r
to second order in A, and substituting in Eq. (1), we find

n 1 « F{
A% + - —— A, - Ay |, 2

SE(A) =

with n the density of particles of the system, m* the
particle’s effective mass, N(0) the density of states at
the Fermi surface, and F{’ — N(O)f{"”. The charge
and spin stiffnesses follow directly from Eq. (2). For
A; = A, we obtain

p, = = (1 + El) (3a)
m* 3
and for A} = —A;
D, = — (1 + —'). (3b)
m 3

To complete Kohn’s theorem and to study the limits
of the response functions, we need to obtain y;j;(q, ®)
and x;,j.(q, ). In the limit q = 0 this is equivalent to
calculating the optical conductivity [11],

wo'(w) = xji(q =0,w) + ﬂ. (4a)
m

For the spin case we can define a spin conductivity 8" (w)
as

wB"(w) = xjj.(q =0,0) + % (4b)

In the Fermi-liquid theory xjj(q,®) and xj,;.(q, @) can
be calculated directly. We can also obtain them from the
appropriate charge response function. To see this consider
the spin case where we have

2
20,0 | (pno |

, = 5
Xp.o: (@ @) g (@ + i0) — wzo (5)
and
20)"0 | (JJ )nO |2
X5, (@, @) = . , (6)

— (0 + i8)2 — wlk

respectively, for the spin-density-density and spin-current-
current response functions [13], where w,0 = w, — wo,
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with @y and o, the ground and nth excited state
energies. The spin-density-density response, which
depends on p}q = D po Olpiqodps, and the spin-
current-current response, which is a function of
J;‘q = Zp,,(p/m)aagw,,ap,,, are related to each other
through a continuity equation wno(p;fq),,o =q - (J;fq),,o,
and through the f-sum rule,

n w? 2w 0
L _ % 2 2%n0 t 2
m - q2 . w2 | (psq)n() l . (7)

Combining Egs. (5), (6), and (7), and using the continuity
equation, we obtain

2
X330 @) F = (@) ®)
A similar expression exists for the density-density
Xpp(q, ) and current-current yj;(q, @) response func-
tions as well.

To obtain x,,(q,w) and x,, , (q, w), we consider the
response of the Fermi liquid to a small external potential
that couples to the charge u; = u; = u, and one that
couples to the spin u; = —u; = u. The nonequilibrium
kinetic equation [10-12]

A ©0)
"(q ) vp) dnp oo’

~ f 1 on 1ot t Uy :0,
(1 —r@ - vp)] 9ed” 1%’ pp TR ©

ony, +

where r = q/w, provides us with the dynamic change in
the distribution function from which we can calculate the
linear response >, 6np0(q, @) = x(q, w)u. In the limit
where q and w both tend to zero, the transport properties
that follow from nonequilibrium considerations will be
connected to ground state properties, as the stiffnesses
derived before by considering a static deviation. For
r < 1 Eq. (9) has a converging Neumann solution which,
combined with Eq. (8), leads to

n n F‘f‘a
P = 0, —-0)=-—— + 1+ — .
Xiij.i. (4 w ) n m ( 3 > (10)

If we now use this result to examine Eqgs. (4) in the limit
w — 0 and r — 0, we have

lim 0o (w) = — (1 + ﬂ) (11a)
w—0 m* 3

and
lim wB"(w) = — (1 + 5). (11b)
w—0 m 3

Comparing Eq. (11a) with Eq. (3a) proves Kohn’s theo-
rem for a Fermi liquid. The equivalence of Eqgs. (11b)
and (3b) proves, for a Fermi liquid, the spin analog of
Kohn’s theorem derived by Shastry and Sutherland [8].
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We note that these results are valid for a 3D infinite sys-
tem of interacting fermions. The energy that appears in
the relation 82E(A)/dA%|a—¢ = D., in this case, is the
energy calculated for a three-dimensional Fermi liquid
where it is implicit that the thermodynamic limit has been
taken, i.e., V — . In this sense, these results are quite
surprising since when one makes V — o« before perform-
ing the derivatives, it has been shown that at least in the
charge channel one should obtain the superfluid weight
D¢ [7]. Therefore, the order in which one calculates the
derivatives seems not to be the important point, but rather
whether or not one is able to follow the ground state adi-
abatically.

The superfluid and magnetic weights are defined in the
other limit ¢ — 0 and r — o, respectively, as

Dy = lirg(ij(q,w) + %) (12a)
and
Dwm = lirg(,\/j‘jx(q,w) + %) (12b)

Now for the metallic phase with no superconducting or
magnetic long-range order, we have that Dy = 0 and
Da = 0. This can be seen from the r — o limit of
Eq. (9), which does not depend on q and w, so that the
right side of Eq. (8) vanishes as 1/r2.

In the superconducting phase both D, and Dy are finite.
For most of the standard superconductors it was shown
that D, = Dy. This follows from some earlier work of
Leggett where he showed that the London penetration
depth at 7 = 0 for a clean superconductor was given by

[13]
(1 + F—f) (13)

AL20) = 4 3

n
m*
The main point to note is that the superfluid weight Dy is
determined by the normal-state Fermi-liquid parameters,
since D, has the same value on both sides of the transition
[7]1. We also have that for the neutral superfluid, e.g.,
liquid 3He, the velocity of the Goldstone mode at T = 0
is given by

2 ==L (14)

and Dy = D., where y. = N(0)/(1 + F3) = n’k is the
charge susceptibility and « is the compressibility. From
this we get the standard result that the Goldstone mode
is just the ordinary hydrodynamic first sound mode with
2= (i/3)(1 + F)) (1 + F{/3)[11,12].

We have spent some time discussing the properties of
the superfluid and the connection to normal-state parame-
ters. The reason for this is that we want to make a con-
jecture, based on an analogy with superfluids, about the
spin-density wave (SDW) instability in a metal. The first

thing to note is that in the normal state the derivations of D,
and D; are clearly similar; in the end only Fy is replaced
by F{ in going from the charge to the spin case. If we
construct the ratio D/ x,, where y, = N(0)/(1 + Fg§), we
get a velocity given by ¢2 = (v3/3)(1 + F{)(1 + F{/3).
This looks like the spin equivalent of first sound; however,
there are no propagating spin waves in the hydrodynamic
regime. On the other hand, there are propagating spin-
zero sound modes for 7 < er. The longitudinal modes
propagate only if Fj > 0, whereas the transverse ones will
propagate for any Fg > —1, i.e., as long as the Fermi lig-
uid is stable. This mode for most values of F§ and F{ has
a quadratic dispersion that depends as well on the applied
magnetic field [10,14]. This clearly does not qualify as a
normal-state mode whose velocity is given by D/ x;.

There is, however, a regime of the parameter space,
recently derived by one of the current authors [15], that
has a velocity given by D;/yx,. This mode is obtained
from the normal-state spin hydrodynamic equations for
the case Fy = F{/3. In this regime the transverse spin
wave has a linear dispersion given by w, = w, * c,q
[15], where w, = 2B,, with B, the external magnetic
field,

D,
2 ==, (15)
Xs
and
D, 2
2 = Y (| 4 Foy
Xs 3

Before we complete the conjecture, we turn now to
the SDW instability. While this is known mainly as
a short-wavelength phenomenon, the symmetry breaking
near the transition creates the periodicity from which
the hydrodynamics of long-wavelength spin waves will
have the same physical content as their short-wavelength
counterpart.

In the following we consider some specific models to
make the points, but the conclusions are more general.
For the Hubbard model at half filling in the weak coupling
limit U/t < 1, where U is the on-site Coulomb repulsion
and ¢ is the hopping matrix element, the mean field
ground state is an ordinary commensurate SDW [16].
In the large-U regime this Hamiltonian reduces to the
Heisenberg model with J = 4¢2/U. At the RPA level
Xo.p,(Q, ) has been calculated [16] for all values of U/t
at half filling. It can be shown that [16,17] x, , (q,®)
gives the same result for the two limits, i.e., w — 0,
r—0 and ¢ — 0, r — . What this means here is
that D, = Dy. For example, in the large-U limit with

= 4¢2/U, the RPA gives D, = Dy = 2Ja?, with a
the lattice constant [16,17]. This result is clearly more
general than the RPA result. If we examine the spin
hydrodynamic equations in the ordered antiferromagnet,
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it can also be shown that the spin wave velocity is given
by [18]

2 _ Dmwm (16)

and Dy = Dy, where y, is the transverse spin suscepti-
bility at ¢ = 0.

We have discussed the properties of the charge and
spin channels together to emphasize the similarities be-
tween them, in particular, for the spin channel when
F§ = F1{/3 [15]. There are many qualitative similari-
ties between the superfluid and the SDW phases. At the
mean field plus RPA level they are mathematically iden-
tical. Our conjecture then is that D; has the same value
on both sides of the magnetic transition, i.e., the normal-
state Fermi-liquid parameters close to the SDW transition
temperature Ty determine the magnetic weight D » in the
ordered phase. This conjecture implies that the normal-
state spin-wave mode with Fg = F{/3 is the one that
evolves into the Goldstone mode at the transition. The
strong spin fluctuations that are present near an SDW
transition could, in fact, force specific relationships be-
tween the parameters near 7y. This can be studied ex-
perimentally by measuring the spin wave spectrum near
the transition. The standard conduction electron spin res-
onance (CESR) experiments pioneered by Schultz and
Dunifer [19] could be used to perform these measure-
ments.

Some brief remarks concerning the nature of the
metal-insulator transition are also worth discussing here,
although they have been pointed out in other contexts. In
particular, we have D. — 0 as we approach the insulating
phase. This could result from m*/m — o (Brinkman-Rice
metal-insulator transition) or n — 0 (Mott metal-insulator
transition). It should be noted that m*/m — « does not
necessarily lead to an insulating state. For example, in a
Galilean invariant system, m*/m = 1 + Fj/3; thus D, =
n/m. Clearly m* could diverge and the system would
remain conducting. Another question to be addressed is
which electrons contribute to the conductivity. From the
derivation we see that only Fermi-surface quantities enter
into D, i.e., D, = %N(O)v%(l + Fi/3). This can be put,
for a spherical Fermi surface, in the form of Eq. (3a)
which suggests that all of the electrons are contributing to
D.. This is no accident of the spherical Fermi surface.
What we have is that the vector potential shifts every
momentum state by the same amount p — p — A which
corresponds to a shifted, but undistorted Fermi surface.
Thus, while it is possible to express D, in terms of Fermi-
surface properties, all the electrons contribute to the
conducting state. The metal-insulator transition cannot
occur with n — 0 unless some other symmetry of the
lattice is broken as in an SDW or CDW. If this occurs
then exitons could form leading to a critical density below
which the material is no longer conducting [2].
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To summarize, we have derived Kohn’s theorem for a
Fermi liquid. In addition, we have proved the equivalent
theorem for the spin stiffness in a Fermi liquid. We have
also proposed that in the ordered SDW phase Dy =
(1 + Fg)n/m*, where F§ = F{/3. We have discussed
some of the properties of a Fermi liquid when approaching
a metal-insulator transition.
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