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The 2N-dimensional quantum problem of N particles (e.g. , electrons) with interaction P/r in a two-
dimensional parabolic potential ~o (e.g. , quantum dot), and magnetic field 8, reduces exactly to solving
a (2N —4)-dimensional problem which is independent of B and coo. An exact, infinite set of relative
mode excitations are obtained for any N. The N = 3 problem reduces to that of a fictitious particle in
a two-dimensional, nonlinear potential of strength p, subject to a fictitious magnetic field Bt;, ~ 1, the
relative angular momentum.

PACS numbers: 73.20.Dx, 03.65.Ge, 73.40.Hm, 73.40.Kp

Few-body problems have always attracted interest in
the fields of atomic and nuclear physics. Recent work
on laser-cooled ions in Paul traps [1] has heightened
their importance in atomic physics. In condensed mat-
ter physics, such problems have been used indirectly as
cluster calculations for understanding many-electron sys-
tems such as the two-dimensional (2D) electron gas in a
magnetic field. A famous example is Laughlin's numeri-
cal calculation for N = 3 electrons in a 2D parabolic po-
tential used for investigating the fractional quantum Hall
effect [2]. Few-body problems have recently taken on
more direct relevance in semiconductor physics due to
rapid advances in fabrication of quantum dots contain-
ing few electrons [3—6]. In lateral quantum dot struc-
tures, the electrons are typically free to move in only two
spatial dimensions, and the confining potential is approxi-
mately parabolic [3,4]. A complete description of this
few-electron system is complicated since the confinement
energy, the electron-electron repulsion, and the cyclotron
energy due to applied magnetic fields are typically com-
parable in magnitude. Numerical perturbative approaches
employing a basis of noninteracting single-particle states
become computationally intensive in the strongly interact-
ing (Wigner solid) regime. Analytic simplifications of the
exact N-particle Hamiltonian or exact solutions of model
N-particle Hamiltonians can therefore be useful.

Few-body Hamiltonians are rarely solvable analyti-
cally. Exceptions include N particles in 1D with P/r
interaction [7] and N = 2 electrons in 2D with P/r2 in-
teraction [8] and magnetic field. Here we show that the
2N-dimensional problem of N particles (e.g. , electrons)
with P/r interaction in a 2D parabolic potential too (e.g. ,

quantum dot) and magnetic field B reduces exactly to
solving a (2N —4)-dimensional problem which is inde
pendent of B and coo. An exact set of relative mode exci-
tations are obtained. The N = 3 particle problem reduces
to that of a particle moving in a 2D nonlinear potential of
strength p, subject to a fictitious magnetic field B&;, ~ J,
the total relative angular momentum. The ground state

J (i.e., magic number) transitions for N = 3 are quan-
titatively consistent with numerical calculations for the
Coulomb interaction [6]. Analytic results are given in
the Wigner solid regime. The present work implicitly in-
cludes mixing with all Landau levels.

The exact Schrodinger equation for N particles, with re-
pulsive interaction P/r moving in a 2D parabolic poten-
tial subject to a magnetic field B (symmetric gauge) along
the z axis, is given by (H,„„,+ H, v,„)Ir = EW;

N

H„„.= P ' + —m'cuD(B)lr;I + '
l;)

(1)
i(j ~ J

where too(B) = too + co, /4, co, is the cyclotron fre-
quency, and H, ~;„= g'p, ttBQ; s;—, . The momentum
and position of the ith particle are given by 2D vectors p;
and r;, respectively; l; is the z component of the angular
momentum. The exact eigenstates are written in terms
of products of spatial and spin eigenstates obtained from
H p and H,„;„, respectively; eigenstates of H p' are
just products of the spinors of the individual particles.
We employ standard Jacobi coordinates X, (i = 0, 1, . . . ,

N —1) where Xo = (1/N) g, r, (center-of-mass), Xi =
Ql/2(r2 —ri), X2 = Q2/3[(ri + r2)/2 —r3], etc. (see
Fig. 1 for N = 3) together with their conjugate momenta
P;. The center-of-mass motion decouples, H p„, =
HcM(Xp) + H„]((X;op)), hence E

&
= EcM + E„~.

The exact eigenstates of HCM and energies EcM are
well known [9]. The nontrivial problem is to solve the
relative motion equation H„,~P = E„,ig We transform.
the relative coordinates (X;~o) to standard hyperspherical
coordinates: X; = r(p, , sinned+i) cosn;e'e' with r ~ 0
and 0 ~ n; ~ ~/2 (ni = 0). Because 1 remains a
good quantum number, we introduce a Jacobi transfor-
mation of the relative motion angles (0;): in particular,
0' = (N —1) 'g, , 0;, 0 = Oi —02, etc. (see Fig. 1

for N = 3). We hence have (N —1) 0 variables, (N —2)
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FIG. 1. The N = 3 system. Reading clockwise, classical
configuration for three repulsive particles (132) corresponds
to (n0) ,= (vr/4, 7r/2) [i.e., (x, y) = (0, 0)]; (123) corresponds
to (n0) ,= (7r/4, —~/2) [i.e. , (x, y) = (0, ~) or, equivalently,
(0, —m. )].

results have shown similar modes to this set of P-
independent excitations [10]. All that remains is to solve
the B and cup-independent hyperangular equation which
resembles a (single-particle) Schrodinger-like equation in

(2N —4)-dimensional II space. The eigenvalue of the
hyperangular equation

2—

e = —y(y + 2N —4) —J — '"', (5)
8 h cup(B)

where V,~„, is the potential energy of the classical,
minimum-energy configuration (Wigner solid); V,~... ~
P'/ coo(B), and hence e (like y) is independent of B and

The exact relative energy for any N

E ,
= Rwn„fB) (2n + [N —2j + I +

htdp B

8~ '"
Cuc+ , + 1 + J '

. (6)
6 2n variables, and a hyperradius r giving a total of 2(N —1)

variables as required for the relative motion. The exact
eigenstates of H„~ have the form P = e' R(r)G(A),
where 0 denotes the 2N —4 remaining t0, n) variables
excluding O', R(r) and G(A) are solutions of the hyper-
radial and (2N —4)-dimensional hyperangular equations,
respectively. The hyperradial equation is

d 2N —3 d y(y + 2N —4)
I" dI" p

2

F„] only depends on particle statistics through e. As
6 ~ 0, E„& V,&„, and e 0. Physically, e accounts
for the "zero-point energy" in 0 space associated with the
quantum-mechanical spread of G(A) about the hyperan-
gles 0, corresponding to the classical, minimum-energy
configuration (Wigner solid); the actual spread in G(A)
and hence e will depend on total wave-function symmetry
requirements (see below for N = 3). In general e ~ 0,
e —P" where p, ( 1 [the dominant P dependence of E„,~

lies in (V,&„,)2] and e —J~ where 8 ( 2. Equation (6)
implies that, for any N, the ground state J value will tend
to become increasingly large and negative with increas-
ing B field (cu, ) 0, e.g. , electrons). We now demonstrate
these statements explicitly for N = 3.

For N = 3 we change variables from u, 0 to x, y
where x = In(tana) and y = 0 —7r/2. Since 0 ~ n ~
~/2 hence —~ ~ x ~ ~ (N.B. —~ s y s z). We
define p, = (lt/i)B/Bx and pY

= (6/i)B/By The exac.t
hyperrangular equation can be written in the form

lp
4

2m* (E„) —h Jo), /2)

where lo = h[m*tuo(B)] ', the parameter y ) 0 and is
related to the eigenvalue of the B and cop-independent
hyperangular equation (see below). Equation (2) can be
solved exactly yielding

~~c
E„,~

= hero(B)(2n + y + N —1) + J (3)

where n is any positive integer or zero and

R(„) =
!

Li+v-2 e "/24-
4 'o ) "

k lo J
(4)

p~ [p~ + hJ cos(2tan ' e")/2]2
+ + V(x, y; e) G(x, y)

Equation (3) provides an exact (and infinite) set of relative
mode excitations 2htuo(B)kn for any N regardless of
particle statistics and/or spin states. These are "breathing'

!

modes, as shown below for N = 3; numerical Coulomb where

= eG(x, y), (7)

2 + cos(2tan ' e') 3 . 2, , 1
V(x, y; e) = m*P, . 2

——sin (2tan ' e') + —cos (tan ' e )cosec 2tan ' ex + cot tan ' e 2 —3 sin y 4 2

cos (2tan ' e')

Equation (7) represents the single-body Hamiltonian for a fictitious particle of energy E and unit mass, moving in the
x-y plane in a nonlinear (i.e., e-dependent) potential V(x, y; e), subject to a fictitious, nonuniform magnetic field in the
z direction

Bfic = AJc [I —cos[4(tan ' e )]J.
4e
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cue+ J
2

(10)

The energy E„] ~ V,~„, since it includes the hyperradial
zero-point energy (N.B. h 0 yields E„i V,i,„and
Bf;, ~ 0).

Next consider large but finite P. The fictitious particle
now moves in the vicinity of the minimum [i.e., (x, y) =

Bf;, is independent of B and has a maximum of h
~
J

~
c/2e

at x = 0 for all y. For small x, Bf;, = (hJc/2e) (I —x~).
As x ~~, Bf;, 0. Note we have here chosen to
highlight the Schrodinger-like form of Eq. (7); a simple
rearrangement of Eq. (7) shows it to be Hermitian with a
weighting function sin (2 tan ' e'). Our results are exact
so far.

Figure 2 shows the potential V (x, y; e) in the (x, y) plane.
V(x, y;e) ~ 0 everywhere. Minima occur at (0, 0) and
(0, ~sr) where V(x, y; e) = 0 [N.B. (0, 7r) is equivalent
to (0, vr)]. —Maxima occur at (In~3, ~~/2) in Fig. 2,
where V(x, y; e) ~ ~. Since e ~ 0, these statements hold
for any e. We now discuss the physical significance
of these features. The classical configurations of mini-
mum energy (Wigner solid) correspond to the particles ly-
ing on a ring in the form of an equilateral triangle with
V

~

= happ(B)[6m'P]'/ . There are two distinct configu-
rations with clockwise orderings (132) and (123) corre-
sponding to (n, 8) = (~/4, ~sr/2) In (x, y. ) coordinates,
these correspond to (0, 0) and (0, 7r) [equivalently (0, vr)]-
Hence the classical configurations coincide with the min-
ima in V(x, y; e) in Fig. 2 and the maximum in B&;,. The
formation of the Wigner solid should therefore be favored
by both large Bf;, (i.e., large

~ J~) and deep V(x, y; e) min-
ima (i.e., large P, strong electron-electron interactions).

Consider the limit of three electrons with very strong
electron-electron interactions (i.e., P ~ ~). Since the
tunnel barrier height between the two V(x, y; e) minima
—P, the fictitious particle sits at one of these minima
and the system is locked in one of the two classical con-
figurations, e.g. , (132) at (0, 0). The tunneling probabil-
ity between the minima is zero. Tunneling between the
two minima implies a mixture of configuration (123) into
(132) and hence interchange of the original electrons; in
many-body language exchange effects arising from wave-
function antisymmetry are therefore negligible. e is small
compared to m*P and Eq. (6) reduces to

~p I/2

E i =happ(B) 2n+ 1+ J + z + I
62

I

Q~~ K
I

(0, —Tt)

FIG. 2. Contour plot of fictitious potential V(x, y; e) in the
(x, y) plane for N = 3. Relevant corresponding configurations
are shown. Minima in V(x, y; e) occur at (0, 0) and (0, ~sr) (i.e.,
at classical configurations). Maxima occur at (lnv3, ~7r/2),
where V(x, y; e) ~ (i.e., particles 2 and 3 or 1 and 3
coincident). V(x, y; e) is positive and finite everywhere else.
The same qualitative features appear for all e (e/m'P = 5 for
illustration).

(0, 0)]. The electrons in the Wigner solid are effectively
vibrating around their classical positions. Expanding the
potential V(x, y; e) about (0, 0) to third order, the exact
Eq. (7) becomes

Ji2 (pY hJx/2) I 2 ~ I

2
+ + —rp, x + —cp y G(x, y)2

= eG(x, y), (11)
where ~p, = 3m*P/4 + 2e and cp = 3m*/3/4 This has.
the form of a single electron moving in an anisotropic
parabolic potential, subject to a uniform magnetic field
B&;, = hcJ/2e Equation (.11) is exactly solvable for e
using a symmetric gauge [11] (the energies are indepen-
dent of the choice of gauge for Br;,) Afull discussio. n of
the results for any t will be presented elsewhere. As an
illustration, we consider small e hence ~ = co~. Equa-
tion (6) becomes

E, i
= happ(B) 2n+ I+ J + 2 +2(2n'+ Ill'+ I) J + 2

2l'J
6m"P, , 2 12m*P

—&/2 ~~c+1 +J
2

(12)

The fictitious particle has its own set of Fock-Darwin (and hence Landau) levels [9] labeled by n and a fictitious
angular momentum l'. For large P and small n', l', and J, Eq. (12) yields an oscillator excitation spectrum with two
characteristic frequencies v 2 happ(B) and 2hrpp(B) representing "shear" and "breathing" modes of the Wigner solid.
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For smaller p (i.e., weaker interactions) and/or larger
E (i.e. , excited states), the tunneling probability between
the V(x, y; e) minima in Fig. 2 becomes significant; the
Wigner solid begins to melt and wave-function antisymme-
try (exchange) must be included. For three spin-polarized
electrons, P must be antisymmetric under particle inter-
change i ~ j. The hyperradial part R(r) is invariant;
particle permutation operations in (r~, rq, r3) become
straightforward space grou-p operations in the (x, y)
plane. For small (x, y), 1 ~ 2 is equivalent to (x, y) ~
(x, y + 7r) with 9' ~ I9' + ~/2; 1 3 is equivalent to
(x, y) ~ (x, y

—7r) with 0' ~ 0' + 7r/6 [(x,y) repre-
sents (x, y) rotated by 47r/3]; and 2 ~ 3 is equivalent
to (x, y) ~ (x, y + ~) with 0' 0' —m/6 [(x, y) rep-
resents (x, y) rotated by —4~/3]. Single valuedness of
P implies e —' G(x, y + 2~) = G(x, y). Note that we
have implicitly satisfied Bloch's theorem in this analysis;
i.e. , G(x, y ~ 27r) = e —' "G(x, y). The solutions G(x, y)
of Eq. (7) with the lowest possible e (and hence lowest
E„~ at a given ta, ) should be nodeless in the vicinity
of (0, 0) [cf. ground state in the parabolic potential with
n' = 0 = l' in Eq. (12)]. However, the above symmetry
requirements forbid such a nodeless solution unless
e' ~ = 1. Therefore the only symmetry-allowed so-
lutions G(x, y) which are nodeless (i.e., smallest e and
hence lowest E„~ at a given ca, ) are those where J is a
multiple of 3. Evaluating the simplified expression for
E„~ in Eq. (12) (n' = 0 = l'), the following ground state
J transitions are obtained with increasing ~, for three
spin-polarized electrons in a GaAs dot (Jttao = 3.37 meV
as in Ref. [6]) [12]; —3 —6 at B = 5.0 T, —6 —9
at B = 8.7 T, and —9 ~ —12 at B = 12.2 T (N.B. J = 0
is not allowed by symmetry). The numerically obtained
values from Ref. [6] are B —5.5, 8.4, and 12.4 T using a
Coulomb interaction. Our analytic results therefore agree
well with the numerical calculations despite the different
interaction form (see below). A feature of these analytic
results is that they become more accurate in the Wigner
solid regime (e.g. , large P or ~J~) while the numerical
calculations become more computationally demanding.

For general N, the hyperrangular equation [cf. Eq. (7)]
becomes 2N —4 dimensional. However, in the Wigner
solid regime (large P or ~J~) the classical minimum-
energy configurations will still be important in determin-
ing e and hence F„], just as for N = 3. The classical

minimum-energy configurations (with 1/r interaction) for
N ( 6 all consist of N particles on a ring; for N = 6
additional minima occur [13]. Intriguingly it is at N = 6
that the magic number J sequence of 5J = N is broken
[14]. The present formalism which emphasizes classical
configurations may shed light on a possible link here.

Finally we note that the p/r~ interaction (p ) 0) is
not unrealistic in quantum dots due to the presence of
image charges; in particular, it resembles the dipolelike
form used successfully in Ref. [4]. Furthermore, recent
quantitative comparisons [10,11,15] have shown that the
1/r2 and 1/r repulsive interactions yield energy spectra
with very similar features [e.g. , ground state J transitions,
the relative excitation 2Jt cd p(B) for N = 2 [10]]; the above
results for N = 3 are consistent with this finding. Signifi-
cant differences will only arise for the case of attractive
forces p ( 0 (e.g. , between electrons and holes) because
of the increased importance of the r 0 dynamics for
that case.
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