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Spectral Statistics of Mesoscopic Wires: Crossover from Wigner-Dyson to Poisson Regime
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We calculate the density of states autocorrelation function K(L, col of a quasi-one-dimensional wire
for practically all relevant values of the sample length I. and the energy separation cu. As a result we
obtain an overview including known types of spectral correlations for L smaller than the localization
length g, novel spectral behavior emerging in the localized regime, L » g, and Poisson statistics in the
thermodynamic limit. The analysis is performed within the framework of the supersymmetric nonlinear
o. model.

PACS numbers: 72.10.Bg

Energy spectra of mesoscopic metals exhibit pro-
nounced correlations as long as the disorder is too weak
to cause localization. Upon increasing the disorder
strength, a transition to the insulating phase takes place
and most of the system's eigenstates become uncorrelated.
Eventually, one obtains Poissonian level statistics, if a
thermodynamic limit is understood. For a long time,
the strongly correlated regimes, characteristic for weakly
disordered metals, and the extreme Poisson limit existed
as disconnected islands in a two-dimensional parameter
space spanned by disorder concentration and system size.
Neither the type of correlations appearing in the crossover
region nor the spectral statistics of finite localized systems
were known.

Tremendous progress has been made in a series of re-
cent papers [1—3] which led to the proposal of a sort of
phase diagram [3] accounting for all regions intermediate
between the metallic and the insulating regime. As for
the metallic side of the metal insulator transition, a co-
herent picture was obtained by combining diagrammatic
perturbation theory, renormalization group approach, and
scaling arguments. Because of the lack of a truly mi-
croscopic approach, however, the analysis of the insu-
lating phase turned out to be more problematic. To de-
scribe this side of the transition, it was assumed that a
d-dimensional system of size L much larger than the lo-
calization length g decouples into (L/g)" uncorrelated
subsystems of volume gd. As a consequence, the den-

sity of states (DOS) autocorrelation function K(L, to) =
v 2(Bv(E + to) Bv(E)) [v(E) denotes the DOS, ( ) the
disorder average, v:= (v(E)), and Bv(E) = v(E) —v]
obeys the scaling law

where A~ is the level spacing corresponding to a single
localization volume and f(to/A~) = K(g, co) is the asso-
ciated correlation function. Qualitatively, K(L, co) agrees
with the type of correlation functions appearing in the
metallic regime.

Yet, the above-mentioned picture of strictly independent
gd volumes is certainly oversimplified. In reality, the over-

K(L, co) = ——% 23Qe IQj1

32
P'(Q) P-(Q),

~[Q] = 5' mDv
str(VQ) + str(Q A), (2)

where P —(Q) = str[(Q —A)(1 ~ A)k], A = diag(1, 1,
—1, —1), k = diag(1, —1, 1, —1), and "str" denotes the
generalization of the matrix trace to graded spaces. The
derivation of Eq. (2) can be found in Ref. [4]. Due
to the presence of the symmetry-breaking ~-dependent

lapping tails of localized wave functions induce a correla-
tion of neighboring localization volumes, and it is by no
means evident that this mechanism does not lead to a quali-
tatively different result. In the present Letter we show that
level correlations characteristic for the localized regime do
in fact exist. This is done by calculating the autocorrela-
tion function K(L, to) of a quasi-one-dimensional wire of
length L for arbitrary values of L and co. As a result, we
obtain a general overview scenario including the known
types of metallic spectral statistics, the extreme Poisson
limit, as well as novel types of correlations emerging in
the localized phase. It has to be noted that our findings
for the region intermediate between metallic diffusion and
localization are not directly comparable to the analyses [1—
3]. Contrary to the type of systems addressed in these
references, quasi-one-dimensional wires do not exhibit a
true second-order metal insulator transition. Localization
is inevitably observed once the system size exceeds the lo-
calization length g = SkF l, where kF denotes the Fermi
momentum, 5 the wire's cross section, and l the elastic
mean free path. Notwithstanding these differences, it will
become apparent below that the mechanism causing level
correlations characteristic for the localized phase, L ~ g,
applies to systems of higher dimensionality as well.

In the following we sketch the calculation of the func-
tion K(L, to) within the framework of the supersymmetric
nonlinear cr model. For the sake of computational sim-
plicity, we consider the case of unitary symmetry, i.e.,

broken time reversal invariance. Following Ref. [4] we
represent K(L, co) in terms of a functional integral over a
field of four-dimensional supermatrices Q,
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term in the action 5[Q], the functional integral Eq. (2)
cannot be performed directly. Instead, one may apply the
transfer-matrix method [4], which amounts to a mapping
of the integral to a set of equivalent differential equations.
To illustrate the procedure, let us consider the auxiliary
quantity

Y(i(Q, t) =

[—8( + 6]Yo(A, t) = 0, Yo(A, O) = 1,

6 =
—,6 5„+ V(A), (5)

where 5, = 4A P, i Bq (~1 —A;~ /A ) Bq, denotes the
radial part of the Laplacian, A:= Ai —A2, and V(A) =
—i(cu/orb, t) A is the potential expressed in terms of the
A coordinates.

To complete the reformulation of Eq. (2) we define a
second auxiliary quantity Y by

[—6, + 6]Y (A, t) = Yo(A, t), Y (A, O) = 0. (6)

Expressed in terms of Yo and Y, K(L, cu) takes a form
which no longer involves a functional integration:

2
K(L, o)) = ——!)I d[A]

t
dt' Yo(A, t —t') A Y (A, t'),

dAi A

where henceforth t = L/g

'DQe ~~'l, t = —. (3)
Q(x)=Q

It can be shown [4] that Yo obeys the differential equation

I l clap—8, + b, ti
—— str[Q, A] Y (Q, t) = 0, (4)

16 2 ~Ay

subject to the initial condition Yo(A, O) = 1. Here A~
is the mean level spacing corresponding to a sample of
length L = g, and h~ denotes the Laplacian acting on
the manifold of Q matrices. The relation between Eq. (4)
and Eq. (3) has its analog in conventional quantum me-
chanics: Regarding the parameter t as a sort of time
variable and the Q matrices as fundamental degrees
of freedom (analogous to position or spin), Eq. (4) is
nothing but the time-dependent Schrodinger equation
corresponding to the functional integral Eq. (3).

As it stands, Eq. (4) represents a second-order differ-
ential equation in nine variables, some of them anticom-
muting. A drastic simplification arises upon introducing
coordinates which are tailored to the symmetries of the
problem. The "potential" V(Q) = (i~vS~/2) str(QA) is
invariant under transformations Q ~ k ' Qk, k E K,
where K is the subgroup defined by [K, A] = 0. Proceed-
ing in complete analogy to the treatment of spherically
symmetric potentials in quantum mechanics, one may
represent the Q matrices in terms of "angular" coordinates
parametrizing the symmetry group K as well as "radial"
coordinates A = (Ai, A2); Ai E [1,~[, Aq H [—1, 1] ac-
counting for the remaining degrees of freedom. As a
result, Eq. (4) transforms into the purely radial equation

Equations (5), (6), and (7) are completely equivalent
to the original representation Eq. (2). The solution of
the differential equations depends sensitively on the value
of the ratio cu/A~. For cu ) A~ (cu ( k~), the potential
term V dominates over (is small in comparison with) the
"kinetic" term —,6 5, . In the following, we discuss both
cases separately.

cu ) A~.. The strength of the potential confines
to stay close to the origin (1,1), implying that 5,. can
be approximated by the Laplacian of a Oat manifold:
5„= 8A Bq, in which case the differential equations can
be solved analytically.

Physically, cu ) A~ represents the region of metallic
diffusion. According to the semiclassical analogy be-
tween spectral correlations and classical dynamics [5], we
are probing a classical particle's motion on time scales

——g /D, which are too short to explore an en-
tire localization volume. Thus, localization is not yet felt
on these energy (time) scales. For large samples L ) g,

K(L, ai) (8)

in agreement with the results obtained for diffusive sys-
tems by Altshuler and Shklovskii (AS) [6]. Equation (8)
indicates that a particle can diffuse freely for all val-
ues r ( g2/D no matter how large the system is. In
short systems, L ( g, the prevalence of unbound diffu-
sion is limited by the system size instead of g, imply-
ing that the approximation Eq. (8) applies only up to en-

ergy values cu = E, = D/L On smaller . energy scales
one is probing the fully ergodic regime which can be de-
scribed by means of random matrix theory [4]. Indeed,
for A~ ( co ( E„K(L,cu) = —I/2(A/7r cu) which is the
smooth part of the correlation function obtained from a
Gaussian unitary ensemble [7].

cu ( At-. In this regime, Eqs. (5) and (6) are no
longer analytically solvable. As an alternative to a
direct numerical integration, one may resort to a formal
eigenfunction representation of the operator 6. This
strategy is motivated by the observation that the "large-
t" physics is governed by a few low lying eigenvalues,
which are certainly much easier to compute than the
complete solution of the differential equations.

To ease the eigenfunction decomposition, we sub-
ject the operator 6 to a similarity transformation
6 A ' 6 A . As a result, 6 becomes separable,
i.e. , 6 = 6i + 62, where 6„a = 1, 2, involves only
the coordinate A . The eigenfunctions of the trans-
formed operator can thus be represented as product
states, ~P;) = ~Pi i) e ~fi 2), with associated eigenvalues
ej:ej i +'lEj p where 6,~P;, ) = e;, ~Pj g) Assuming
completeness, P; ~ P;) (P; ~

= 1, and normalizability with
respect to the scalar product (PiP):= f[dA] A~ P(A) @(A),
it is not difficult to show that the correlation function takes
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the form [8]

K(L, ~) = ——!)I
i,j,k

X (~„'~,„'e '' + ~,„'~„'e '"'

(9)
where co;j .= e; —ej. The final steps of the calculation,
that is, the computation of eigenvalues, eigenfunctions, and
the r.h. s. of Eq. (9) were performed numerically. For prac-
tically all values of (L, cu), the lowest 6 (10~) eigenvalues
were sufficient to obtain precise results.

A typical representative of K(L, ru) corresponding to a
diffusive sample, t ( 1, is shown in Fig. 1. Essentially
we rediscover the findings of previous analyses, i.e.,
GUE-type correlations for small energies cu & F, [4] and
an overall -cu 3/~ power law decay for cu ~ F, [6].
On top of the smooth —~ / background, however,
we obtain a novel fine structure which oscillates with
the period of the level spacing A. The existence of
these fluctuations has recently been predicted [9] on
the basis of a simple consideration: It is known (cf.,
e.g. , Ref. [5]) that the ru-Fourier transform of K(L, ru),
K(L, r) exhibits a nonanalyticity at r = A. Upon Fourier
transforming, the latter causes 5-periodic fluctuations
which persist throughout the entire spectrum. Technically
speaking, these fluctuations represent a nonperturbative
effect, which is why they were not resolved within earlier
diagrammatic analyses [6].

Upon increasing the system size beyond the thresh-
old t = 1, a slow crossover toward a universal type
of spectral correlations, characteristic for the localized
regime takes place (cf. Fig. 2). The essential features
of the large-t statistics can be summarized as follows:
(i) The scaling law Eq. (1) applies. (ii) The relation

f (ru//1 t) = K($, cu) applies only in the high energy
regime cu ) A~, where f(x) = x 3/~, as discussed above.

0.0

%.2

(iii) For small energies f(x) ~ ln(x), e ~/~ & x && 1,
in contrast to K(g, cu ( A~) = —l. (iv) A sum rule
lim„J"'„cd cuK(L, cu) = 0 (cf., e.g. , Ref. [10]) ap-
plies. Note, however, that Eq. (1) implies that the
spectrum becomes increasingly more "compressible" as L
grows larger (that is, the number of levels included in the
interval [—tu„cu, ] has to increase in order to fulfill the
sum rule).

As opposed to the high energy regime ~ ) A~, the be-
havior of the correlation function for small energies cu (
A~ is governed by localization effects. Phenomenologi-
cally, the logarithmic dependence of the scaling function

f can easily be understood within a model of "correlated
localization volumes" [11]. To begin with, let us consider
an oversimplified model which neglects any correlation
between neighboring s volumes. As a result, the Hamil-
tonian separates, H = P,', H;, where H; corresponds to
the i th localization volume. Typically each H; contributes
a single eigenstate P; with associated energy e; per energy
interval A~, and the projection of H onto an A~-energy
window takes the form H = diag(e~, . . . , e, ) when repre-
sented in the preferential basis (P;, i = I, . . . , t). Upon
abandoning the condition of no correlation between differ-
ent volumes, the matrix H acquires off-diagonal elements

5;j —A~e@'je "j/&, where r;, is the mean separation be-
tween volume i and j, P;, a random phase, and the ap-
pearance of A~ as a reference energy scale follows from
normalization arguments. Although the eigenvalue statis-
tics of the matrix H is still difficult to analyze, one may
probe its relevance for the description of the real spec-
trum by considering the regime of asymptotically small
energies. In this limit, the pairwise repulsion of (energeti-
cally) neighboring levels dominates. It is thus sufficient
to analyze the statistics of the 2 X 2 submatrix contain-
ing those levels e; and ej which come closest to the small
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FIG. 1. Spectral correlation function of a metallic wire,
L/$ = 0.5.

FIG. 2. Spectral correlation functions in the localized regime.
L/g = 1, 10, 100, 1000, 10000. Inset: Double logarithmic
representation.
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FIG. 3. Phase diagram indicating regimes with different types
of spectral behavior.

energy window under consideration. Assuming that the
indices i and j corresponding to the critical levels vary
randomly between 1 and t, we are led to consider the sta-
tistics of the matrix

(
(1&*e '~& e' )

'

where e and e' are Gaussian distributed with width 5 =
A~/t, ~Ir~ —b, ~, and Br H [O, L] is equally distributed.
The corresponding eigenvalue correlation function can
easily be computed, and upon matching numerical factors,
we indeed rediscover the logarithmic law displayed above.
When applied to a system of dimensionality d ~ 1,
the same argument leads to the low energy behavior
&(I-, ~) —(FIL)'Dn(~/~g)]'.

Our main findings are summarized in Fig. 3. For
diffusive systems I. ( g, we reobtain the results of
previous works. As a novel feature we discover the
existence of a 6-periodic fine structure modulating the
spectral correlation function in the AS regime F, ( co (
I/r, ~, where r, ~

is the elastic scattering time. This
demonstrates that the spectrum "memorizes" the position

of individual levels over large distances ~ ) E, In
the localized regime L ) g, we obtain AS type of
statistics for energies cu ~ A~, yet there are no oscillatory
modulations (reflecting the fact that the global level
spacing 6 loses its significance). For small energies cu ((
A~, the spectral correlation function exhibits logarithmic
behavior. Its analytic dependence in the regime of
intermediate energies 5 (& ~ ( A~ is unknown to us.
The scaling law Eq. (1) applies over the whole spectrum,
implying a Poissonian limit limL K(1, tu) = 0 for any
fixed value of ~.
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