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It is shown that the mode-coupling equations for the strong-coupling limit of the Kardar-Parisi-
Zhang equation have a solution for d ) 4 such that the dynamic exponent z is 2 (with possible
logarithmic corrections) and that there is a delta-function term in the height correlation function
(h(k, cu)h" (k, cu)) = (A/k"+4 ')6(~/k') where the amplitude A vanishes as d 4. The delta-function
term implies that some features of the growing surface h(x, t) will persist to all times, as in a glassy
state.

(rt(x, t)rt(x', t')) = 2D6"(x —x')6(t —t'), (2)

where D specifies the noise amplitude.
The objective is to characterize the form of the surface.

Commonly studied are the correlation function

C(k, co) = (h(k, co)h"(k, to)) (3)

and the response function

PACS numbers: 64.60.Cn, 05.40.+j, 05.70.Ln

A simple nonlinear Langevin equation has been pro-
posed by Kardar, Parisi, and Zhang (KPZ) [1] and is now
widely accepted as describing the macroscopic properties
of a wide variety of growth processes, such as the Eden
model, growth by ballistic deposition, and the growth of
an interface in a random medium [2]. This equation is
also related to other seemingly disparate problems such as
randomly stirred fiuids [3] (Burgers equation), dissipative
transport in the driven-diffusion equation [4], the directed
polymer problem in a random potential [5], and the be-
havior of fiux lines in superconductors [6]. Because of its
ubiquity, any advance in understanding the KPZ equation
is likely to have wide significance in both the fields of
nonequilibrium dynamics and disordered systems.

The KPZ equation for a stochastically growing inter-
face is

i)h(x t) 2= t V' h + (Vh) + rt(x, t).
2

It describes the large-distance, long-time dynamics of the
growth process specified by a single-valued height h(x, t)
(i.e., one with no overhangs or voids) on a d-dimensional
substrate x E R . This equation reflects the competition
between the surface tension smoothing forces v V h,
the tendency for growth to occur preferentially in the
direction of the local normal to the surface, represented by
the nonlinear term in Eq. (1), and the Langevin noise term

g which is added to model the stochastic nature of this
growth process. The noise has zero mean and is Gaussian
such that

1

6"(k —k') 6 (a) —to') r) ri (k', co')

The correlation and response functions take the follow-
ing scaling forms:

(5)

For d ) 2, there are two distinct regimes. There is a
weak-coupling regime, for A ( A„where the nonlinear
term is irrelevant and z = 2 and ~ = (2 —d)/2. For
A ) A„ the nonlinear term is relevant and the scaling
relation ~ + z = 2 follows from the invariance of Eq. (1)
to an infinitesimal tilting of the surface h ~ h + v x,
x ~ x —Av t [3]. There is thus only one independent
exponent to be determined in the strong-coupling regime
(which is the only one we shall consider here).

Because there are no obvious small parameters to
describe the strong-coupling regime, most studies of it
have been numerical [7]. The most recent numerically
determined values of the dynamic exponent z seem to lie
between the Wolf-Kertesz [8] conjecture g/z = 1/(2d +
1) and that of Kim and Kosterlitz [9] y/z = 1/(d + 2)
when d ( 4. For d ) 5, g/z is still apparently nonzero
but lies below the values predicted by both conjectures.
Thus there is some very weak numerical evidence that
the upper critical dimension d, beyond which z = 2 and

g = 0 is 4. In our studies we find d, = 4, and we believe
that for d ) 4 the apparent nonzero values of ~ arise from
logarithmic factors masquerading as small powers.

We take a nonperturbative approach to the strong-
coupling regime called mode-coupling theory [4]; in it
one retains in the diagrammatic expansion for C and G
only diagrams which do not renormalize the three-point
vertex A. This procedure leads to the following coupled
equations:
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G '(k, cu) = Go '(k, cu) + A (2~)" [q (k —q)] [q k]G(k —q, co —fl)C(q, 0), (7)

C(k, cu) = Co(k, cu) + —lG(k, co)l
dA
2~ (27r)" [q (k —q)] C(k —q, cu —A)C(q, A), (8)

where Go(k, cu) = (vk —ice) ' is the bare response function and Co(k, cu) = 2DlG(k, cu)l2. Some of us [10] have
recently shown that the mode-coupling equations arise from the large-W limit of a generalization of the KPZ equation
to an N-component model. In principle, this might allow a systematic expansion in 1/N, by which one could go
systematically beyond mode-coupling equations towards a solution to the full problem.

ln the strong-coupling limit, the scaling functions n(x) and g(x), where x = cu/k', satisfy the equations

g '(x) = —ix + PiIi(x), (9)

1
n(x) = —P) lg(x)l I2(x),

2

where P~ = A2/2" r((d —1)/2)vrid+3~I~. The integrals Ii and I2 are given by [11]

Ii(x) = d0 s&n 0 dq cosO(cosO —q) g n(y),q
' x —q'y

f' 2

I2(x) = d0 sin 0 dq(cosH —q) ~ n n( y),
X

(12)

Go '(k, cu) = v(z*)k' —ice, (13)

where r = (1 + q2 —2q cos0)'i~ and 5 = d + 4 —z.
In the strong-coupling limit, the bare term in D in

Eq. (7) can be dropped, as can the term vk in the bare
propagator Go. Equations (9)—(12) are valid for the limit
cu ~ 0, k' ~ 0 with cu/k' fixed. Notice that provided
g ~ 2 no cutoff is needed.

The numerical solution of the mode-coupling equations
in Eqs. (9)—(12) presents formidable problems. Recently,
Tu [11]has attempted such a numerical solution, but the
dependence which he obtained for z on d (first increasing
from the exact value of z = 3/2 in d = 1 then decreasing
at larger d) is so strange that we suspect that his solution
cannot be accurate. We suspect from our own attempts
at finding a direct numerical solution that problems can
arise from the integrable singularities in Eqs. (11) and
(12). However, if we first assume that d, = 4 so that
for d ) d„z = 2 and that n(x) = AB(x) then progress is
possible. (We shall later confirm that such assumptions
are consistent. )

If g = 2, it is now no longer possible to drop vk~

from the bare propagator. Furthermore, I~(x) ceases to
be well defined as the final momentum integral diverges
logarithmically without a cutoff A. Thus even if z = 2
for d = 4, the scaling of ~ is not likely to be simply with
k but with k modified by some (unknown to us) power
of in(A/k). We have been unable to make any analytic
progress once cutoffs are explicitly required. Instead
we shall study the following problem in which the bare
propagator is

and we shall imagine that g is arbitrarily close to 2.
With z* ( 2 no cutoff is required. Setting n(x) = A6(x),
Eq. (9) then becomes

g '(x) = g '(0) —ix + Pi(Ii(x) —li(0)). (14)

where B(x,y) is the beta function. ln addition, with
n(x) = AB(x), Eq. (10) becomes

A = x'A'lg(0)l'T2(z*, d), (16)

where

r(d/2 + 2 —2z)B(z, z —1)
Tz(z, d) =

(4~)"& +'[r(d/2 + 2 —z)]
d

X —+ 2(z —1) (z —2)
2

(17)

Notice that Ti (z, d) is divergent as z ~ 2 refiecting the
need for a cutoff in that limit. The solution of (16), setting
z* = 2 (the integrals here are convergent in that limit) is

Alg(o)l' = (d —4)(d —2)
P]d

4r(d/2)
1 (1/2) r ((d —1)/2)

(18)

The integrals defining the difference Ii (x) —I~ (0)
are convergent without a cutoff and can be calcu-
lated with z = 2. Also g '(0) = v(z ) + I&(0) where
Ii(0) = A2Ag(0)Ti(z", d) with

(3 —2z) r ((d —z) /2 + 1)B(l —z/2, z —1)
Ti(z, d) =

(4~)di +'1 (d/2 + 2 —z)l ((d + z)/2)
(15)
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Setting g(0) = 1 [as can always be achieved by adjusting
v(z*)], the equation for g(x) is

1

g '(x) = 1 —ix —B df' I" g 1

g 1 (19)

p.+i(x) = Blg(x)l'

+ o(p, ) . (20)

Under iteration we found that p„+~ (x) ~ A~ p„(x) as n

~, with the eigenvalue Att ( 1 (which implies stability)
for d ( d* ( 4.76... . En fact, there is a relation between
the eigenvalue AR and the behavior of p„(x) as x ~ 0;
if p„(x) ~ D/x' as x 0 then direct substitution into
Eq. (20) shows that

B 1 d d —1—+R 2 a d/2 —1 —a d/2 —a
(21)

AR has a minimum as a function of a. Within our
limited numerical accuracy, AR determined by iteration of
Eq. (20) is equal to this minimum value. When A& )
1, i.e., when d ) d*, the simple delta-function solution
is unstable. We then expect that n(x) = AB(x) + p(x),
where p(x) is proportional to (d —d*)p (x) and p (x) is
the limiting form for p„(x) as n ~ ~.

Thus we have a solution of the mode-coupling equa-
tions for d ) 4, which is exact in the scaling limit and

where B = 4(d —4) (d —2)/d2. This equation is readily
solved for g(x) numerically. Notice that as d ~ 4,
g '(x) ~ 1 —ix and A ~ 0.

We have therefore found an exact solution for the
mode-coupling equations for d ) 4 when the bare propa-
gator is as given by Eq. (13) with z" ( 2. The model with
this bare propagator (13) is in some sense "long ranged"
compared to the model with the conventional bare propa-
gator (i.e. , with z* = 2). If the value of z emerging from
the mode-coupling approach with the new bare propaga-
tor [Eq. (13)] had been less than the bare z", that is, if the
renormalized propagator were even longer ranged, then
the new model (with z' ( 2) and the conventional model
(with z;* = 2) would belong to the same (strong-coupling)
universality class. However, this was not found. The z

of the calculation is equal to the z* of the bare propagator.
One concludes that the value of z associated with the con-
ventional "short-range" propagator must then be greater
than or equal to z*. But as z* can be taken arbitrarily
close to 2, we conclude that the true value of z associated
with the true short-range propagator must be 2, up to log-
arithmic factors.

One can check whether the solutions for n(x) and

g(x) are iteratively stable as follows. By writing n(x) =
AB(x) + p„+t (x) in Eq. (10), etc. , one sees that

dq lx)
p.

p q (q
+ „,[dq' —(d —1)]p„

stable. It is a "glassy" solution, in that on a Fourier
transforming to (k, t) variables, one sees that C(k, t) (in
the scaling limit) is constant in time. This is rather like
the original definition of Edwards and Anderson [12]
of spin-glass order, i.e., the spins S;(t) have such or-
der if C(t) = N ' g(S;(0)S;(t)) 4 0 as t ~ ~ so that the
Fourier transform of C(t) has a 6 function in it. However,
in the present case, quenched disorder is a priori absent,
as in a "true" glass. Hence the KPZ equation may well
be another interesting model where quenched disorder is
"self-generated, " as recently proposed and discussed in

[13]. If this scenario is correct, our implicit assumption
that the correlation and response functions are time trans-
lational invariant may not be valid, and the mode coupling
may have to be recast in a two-time formulation [14].

One might wonder if the glassy behavior is attribut-
able to the approximations made in the mode-coupling
equations. While our solutions of n(x) are only within
the context of mode coupling, it is easy to see that non-
mode-coupling diagrams for C (see Fig. 1) are such that if
the 6-function ansatz is inserted for the correlator within
the diagram, then each of these diagrams gives only a 6-
function contribution to n(x). Moreover, explicit evalua-
tion of higher-order diagrams permits a generalization of
Eq. (18) which as d ~ 4+ takes on the form

(A A (g(0)[ l l A A (g(0)(A=C, +C3l, I+, (22)
d —4 ) ( d —42 )

where C2 and C3 are constants. Equation (22) implies
that provided there is a nontrivial solution, it will always
be such that A A~g(0)~ —d —4. Hence we expect the
upper critical dimension d, to be 4 even beyond the mode-
coupling approximation.

An approximate solution of Eqs. (7) and (8) has also
suggested that d, = 3.6 [10,15]. Previously Bouchaud
and Georges [16] had argued that d, ) 4 based on a
comparison with directed percolation. The existence of a
finite d, is supported by a 1/d expansion [17];in addition,
a prediction that d, is 4 is contained in the functional
renormalization group calculation of Halpin-Healy [18].

For dimensions d ( 4, we do not expect to see this 6
function, but precursors of glassy behavior such as very
long-lived peaks in h(x, t) are known to exist for d = 2

[19]. It would be valuable to do numerical studies of the
scaling limit of C(k, cu) for d ) 4 to check the existence
of glassy behavior.

FIG. 1. Diagrams for the correlation function beyond the
mode-coupling approximation. The lines with the circles within
them are height correlation functions. If a 6-function form
is inserted for them, the diagrams themselves give 6-function
contributions to n(x).
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Finally, we speculate that given the solution for d = 4
in the mode-coupling equations it should be possible
to construct a perturbative expansion for z in e, where
e = 4 —d. So far, however, we have not succeeded in
this aim.

Two of us (M. A. M. and T. B.) would like to thank the
Newton Institute, Cambridge for its hospitality during the
performance of this work.
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