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Stabilizing New Morphologies by Blending Homopolymer with Block Copolymer
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We examine weakly segregated blends of AB diblock copolymer and A homopolymer using self-
consistent field theory. The addition of homopolymer to a diblock melt is found to stabilize new
ordered morphologies: close-packed spheres, hexagonally perforated lamellae, and bicontinuous cubic
(Qp„g and Qt 3d) phases. We find highly swollen phases that we associate with spherical, cylindrical,
and lamellar micellar regions, and with disordered struts.

PACS numbers: 61.20.Gy, 61.25.Hq, 64.80.Gd

Molecular self-assembly is a phenomenon that occurs
in lipid [1—4], surfactant [5—7], liquid crystal [8,9], block
copolymer [10,11], and numerous other "soft material"
systems. In many cases, they form disordered structures
such as micelles [1,5,6], vesicles [2], sponge phases [5],
and bicontinuous microemulsions [6]. However, they can
also form ordered structures with long coherence lengths
[8]. A remarkable feature is that these varied systems tend
to favor structures of the same symmetries, suggesting a
kind of universality. Commonly, the ordered structures
are monocontinuous arrangements of lamellar, cylindrical,
or spherical micellar units [1,3 —5,7,8, 10,11],but occasion-
ally they are intriguing bicontinuous cubic ones possessing
II3m, Pn3m, and Ia3d symmetries. Lipid-water mixtures
[1,3,4] are well known for exhibiting the latter structures,
which also occur in numerous other systems [5,7, 10,11]
including even thermotropic liquid crystals [9]. Observa-
tions [3,12] of these bicontinuous structures in biological
systems are now stimulating interest regarding the role of
ordering transitions and metabolic functions [13].

Of all the systems exhibiting self-assembly, block
copolymers offer perhaps the best opportunity for a sys-
tematic study due to the extreme latitude in experimental
ability to control the properties and architecture of these
molecules. Furthermore, theoretical techniques for calcu-
lating their behavior are sufficiently advanced to deal with
the complex symmetries. Accordingly, this class of mate-
rials provides a unique opportunity to advance the general
understanding of self-assembly. In order to do so, it will
be necessary to go beyond pure (i.e., single-component)
copolymer melts and consider blends that are more closely
analogous to the multicomponent amphiphilic systems. A
model system for doing so is the binary blend of AB di-
block copolymer with A homopolymer. We will find that
this system exhibits many of the features found in lipid-
water mixtures with additional ordered microstructures,
macrophase separation, and micellar regions.

Because diblock copolymers form a rich variety of
structures on their own, they are most often studied as
one-component systems [10,11,14]. The physics of these
systems is well understood [10]. Immiscibility between A

and B monomers drives the formation of a microstructure.

As this occurs, incompressibility of the melt requires
the overall monomer density to remain uniform, which
can only be accomplished if the molecules stretch. The
competition between interfacial tension where A- and
B-monomer regions meet and tension in the stretched
polymers determines the length scale of the structure.
Symmetric A and B blocks will result in flat interfaces
producing the lamellar (L) microstructure. However,
if a sufficient asymmetry exists between the blocks,
then the interfaces will curve producing, for example,
cylinders or spheres. The arrangement of these units is
largely determined by packing constraints. Those that
tend to fill space well are favored since they require only
small deformations in the units in order to maintain a
uniform monomer density. For the cylindrical units, the
favored arrangement is hexagonal (H), and for the spheres
it is body-centered cubic (Qt 3 ). There are several
more elaborate structures which may also occur. They
include two bicontinuous cubic phases, Qp„3 and Qt 3d,
commonly referred to as double diamond and gyroid,
respectively, and a hexagonally perforated lamellar (HPL)
phase often referred to as catenoid lamellar. The latter
is much like the L phase except that the thin minority-
component lamellae are perforated. The perforations
are arranged hexagonally within the layer and staggered
between adjacent layers. The two bicontinuous phases
are similar in that the minority component forms two
interweaving lattices separated by a majority-component
matrix. The vertices of the Qt 3d and QP, 3 lattices are
threefold and fourfold coordinated, respectively. We note
that uncertainty exists regarding the stability of the QP„3
phase in copolymer melts [10,11,15].

The addition of a homopolymer to the copolymer
melt produces a system [16—21] more analogous to the
amphiphile-water one, where homopolymer plays the role
of water. Adding homopolymer to the melt not only
leads to regions of two-phase coexistence which cannot
exist in a single-component system, but it also affects
the relative stability of the various morphologies. A way
in which the homopolymer accomplishes the latter is by
filling the spaces that otherwise would have to be filled
by highly stretched copolymers. Because this will affect
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the partition function for the segment of chain from 0 to s
subject to the constraint r,. /(s) = r, and it satisfies

6Na V q, —w~(r)q, if s ( f,qc
Bs

(9)
6Na V' q, —w//(r)q, . if f ( s,

1= —Na V'
qh

—wg(r)q/, .

with the initial condition q, (r, 0) = 1 [25]. Because the
two ends of the copolymer are distinct, a second dis-
tribution function qt(r, s) is defined for the other por-
tion of the chain (s to 1) again subject to the same
constraint. It satisfies qf(r, 1) = 1, and Eq. (9) with the
right-hand side multiplied by —1. For the homopoly-
mer, things are simpler. Its partition function is Qh =
/dr qh(r, a:) where qh(r, 0) = 1 and
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Because both ends of a homopolymer are identical, a
second distribution function is not needed.

In terms of the above end-segment distribution func-
tions, the A-monomer density, Eq. (4), can be written

f
ds q, (r, s)qt(r, s)

FIG. 1. Phase diagram for blends of AB diblock and A

homopolymer plotted in terms of the homopolymer volume
fraction P and the A-monomer fraction of the copolymer f
with gN and u held fixed. Dashed lines are extrapolated phase
boundaries, and the dotted line shows (hypothetically) where
swollen microphases might disorder into a micellar region. For
clarity, only the largest biphasic region is labeled.

ds qh(r, s)qh(r, n —s).

The expression for P//(r) is similar except there is no
homopolymer contribution. These expressions satisfy
Eqs. (4) and (5). To satisfy the remaining three Eqs. (6)—
(8), we adjust wz(r), w//(r), and g(r). This is done nu-
merically using the method described in Ref. [14]. There
will, in general, be multiple solutions, each corresponding
to its own phase with a free energy F given by

NF/k//T pp = —Q, —g Qh— dr [yN @g P// + $] .

By comparing F for different structures, a phase
diagram can be constructed. Although our calculations
are performed in the grand-canonical ensemble, we plot
our results in terms of the canonical coordinates yN, f,
n, and @, where the latter is the homopolymer volume
fraction (i.e., the conjugate to p, ). Below, we discuss the
case in Fig. 1 for gN = 11 and n = 2/3. Because we are
dealing with a two-component blend, in general, all one-
phase regions will be separated by two-phase coexistence
regions. In many instances, these biphasic regions are so
small that they are not visible on the scale of Fig. 1 ~

The theoretical phase diagram for the pure diblock (i.e.,

P = 0) is presented in Ref. [14], and at yN = 11, only
the L, H, and Q/ 3 ordered phases are stable. We find
that the homopolymer produces additional morphologies.
For instance, addition of the homopolymer to the ma-
trix of the Q/ 3 phase can cause the rearrangement of
the spheres into a close-packed configuration, the close-
packed sphere (CPS) phase [22]. Furthermore, the ho-
mopolymer causes the Q/ 3d phase to emerge between the
L and H ones in much the same way as it does when

yN increases [14]. Increasing P further causes the Q/ 3d

phase to switch to either the HPL or the Q/„3 phase, de-
pending on whether the homopolymer is added to the ma-
trix or the minority-component lattices. In the latter case,
numerical limitations prevented us from fully determin-
ing the phase boundaries of the Qp„3 phase, but we have
results suggesting that it completely separates the Q/ 3d

phase from the homopolymer-rich disordered (DIS) phase
as indicated with dashed lines in Fig. 1. Notably, this is
the same arrangement of the bicontinuous cubic phases
found in lipid-water mixtures [3,4].

For the HPL and the CPS phases, there is a question
of how the lamellae and the spheres actually pack. In
the regions where we can evaluate free energy differences
to a part in 10, we find the HPL phase favors the
ahab. . . stacking of lamellae over the abcabc. . . one,
and the CPS phase favors the hcp arrangement of spheres
over the fcc one. In real systems, we expect such
small energy differences to be irrelevant in comparison
to nonequilibrium effects.

As observed experimentally [19], we find that mi-
crostructures can only accommodate a small amount of
minority-component homopolymer before macrophase
separation occurs, but they can accommodate large
quantities of majority-component homopolymer. Within
the present mean-field theory, majority-component
homopolymer swells the microstructures eventually
leading to continuous unbinding transitions. In Fig. 1,
the unbinding transitions occur between the L, HPL,
H, and CPS phases and the DIS phase in the interval
0.383 ( f ( 0.544. It is clear that extremely swollen
microstructures will be disordered by fluctuations not
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considered within the present theory. However, this
should occur in a predictable way. Fluctuations will form
a micellar region between some weak first-order transition
[23] (shown schematically with a dotted line in Fig. I)
and the unbinding transition. The mean-field unbinding
transition will become the critical micelle concentration
(CMC) calculated in Ref. [27], and what were transitions
between the L, HPL, H, and CPS microstructures will
become dividing lines between different micellar regions.
None of these lines will remain as thermodynamic transi-
tions [28], and, thus, the micellar region will become part
of the DIS phase.

Naturally, we expect fIuctuations to cause the swollen
L, H, and CPS phases to disorder into lamellar, cylindri-
cal, and spherical micellar regions, respectively [16—18].
What happens to the swollen HPL phase is less obvi-
ous. When the HPL phase swells we find that not only
does the spacing between minority-component lamellae
increase, but so does the size of the perforations. Even-
tually, the minority-component lamellae resemble honey-
comb lattices, which we note are threefold coordinate as
are the two lattices comprising the Qt, 3d phase [I1]. So
when the swollen HPL phase disorders, we speculate that
it will form a random network of struts where the majority
of the vertices are threefold coordinated.

The phase behavior we have described agrees well with
available experimental results, if one keeps in mind that
small modifications to Fig. 1 can be achieved by changing
gN and n For f. = 0.45, we have behavior similar to
that reported by Disko et al. [20]. With the addition of
the homopolymer, their system goes from the L phase to a
L + HPL biphasic region, to the HPL phase, and, finally,
to disordered struts as speculated above. Similar evidence
for the HPL phase and disorder struts has been reported
for blends of starblock copolymer and homopolymer
[21]. Winey, Thomas, and Fetters [19]have reported the
sequence L to L + H to QP„3 to H with increasing

Based on our results, we believe that their biphasic
regions were too small to observe and that the actual
sequence was L to HPL to Qt, 3d to H. Reexamination of
their bicontinuous cubic samples has now revealed them
to be Qt 3d [15], and our speculation about the HPL phase
offers a sensible explanation regarding their unexpected
L + H samples. Most other experimental results on
these blends address the effect of changing the molecular
weight of the homopolymer. We are currently exploring
this along with the effects of changing the segregation.
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