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Dynamic and Debye Shielding and Antishielding in Magnetized, Collisionless Plasmas
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While shielding in collisional, strongly magnetized (one-dimensional) plasmas obeys the standard

Debye result, shielding in collisionless, immobile ion plasmas is far more complex than commonly
believed. In some circumstances, the plasma will antishield a positive test charge; i.e., the plasma
becomes more positive in the neighborhood of a positive test charge. When shielding does occur, it
results solely from electrons dynamically trapped in the neighborhood of the test charge. The new

theory of dynamic shielding, developed herein, is in good agreement with experiments in pure electron
plasmas.

PACS numbers: 52.25.Mg, 52.25.Kn, 52.25.Wz, 52.35.Sb

Collisionless shielding in one-dimensional (highly mag-
netized) immobile ion plasmas is paradoxical. The inser-
tion of a positive test charge into such a plasma locally
accelerates the plasma electrons, causing them to move
faster in the vicinity of the test charge. Since fIux con-
servation requires that faster moving electrons have lower
density, the density of the negatively charged electrons
will decrease around the test charge [1]. The plasma an
tishields the test charge; instead of decreasing the net posi-
tive charge near the test particle, the plasma will increase
the net charge. This phenomenon has been sporadically
recognized in the literature [2—6], but, to our knowledge,
has never before been observed.

Although we observe antishielding when we employ
unusual initial conditions, more commonly we observe
the converse —shielding. We show here that this shield-

ing results from the presence of electrons trapped in the
potential well of the test charge. While several differ-
ent mechanisms can trap electrons, a ubiquitous, fast act-
ing, transit-time mechanism always traps electrons when
the test charge is introduced adiabatically [7]. That one-
dimensional (1D) collisionless shielding requires trapping
does not appear to have been previously recognized, and
the explanation of shielding given in many textbooks and

papers is incorrect or incomplete [2—5,8—10]. Because
the trapping results from dynamic processes, we call the
resulting shielding "dynamic" shielding. Both the ob-
served and calculated magnitude of dynamic shielding
can be significantly smaller than Debye shielding; eventu-
ally collisions transform the dynamic shielding to Debye
shielding.

Shielding and antishielding are distinguished by their
different phase space loading. As shown in Fig. 1, the
phase space in the neighborhood of a positive potential
test well contains two distinct classes of orbits: free
orbits on which electrons stream through the well, and
trapped orbits that close within the well. Since the
phase space area filled by any given set of free electrons
lengthens in z as the set accelerates into the test well,
Liouville's theorem requires that the v, extent shortens

concomitantly. In steady state, the phase space density
distribution function f(z, v, ) must be constant along any
trajectory. Consequently, the electron density n(z) =
1 f(z, v, ) dv, must decrease inside the test well if the
trapped orbits are unpopulated, and the well will be
antishielded. Shielding (density increase), as is found
for adiabatically created wells, can result only from the
trapped orbits being populated.

The results we report were observed in a pure electron
plasma held in a Penning-Malmberg trap (Fig. 2). The
plasma in such traps lies along the common axis of a se-
ries of collimated, cylindrical (r = 1.905cm) electrodes.
The electrodes are biased to create an electrostatic well,
thereby providing axial confinement. A strong axial mag-
netic field (1800 G) provides radial confinement, and also
ensures that the electron motion is one dimensional. More
detailed descriptions of Penning-Malmberg traps can be
found in the literature [11].

We create the equivalent of a positive test charge by
biasing a central electrode to create a square, secondary,
positive electrostatic test well (see Fig. 3). The manner
in which the test well is created determines the plasma
response; when the test well is created nonadiabatically
the plasma enhances (antishields) the test well depth, but

FIG. l. Electron orbit phase space in the vicinity of a positive
test well. Note the change in aspect of the square set of
electrons as they propagate into the well.
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FIG. 2. Schematic of the experiment with a cutaway to show
the plasma. Each cylinder is separately biasable.

ACTW non-ACTW

when the test well is created adiabatically the plasma di-
minishes (shields) the test well depth. We generate nona-
diabatically created test wells (non-ACTW) b 11y a owing

e p asma to Hood into a region in which the test well
is already present. Under these conditions the electrons
encounter the test well on a time scale comparable to their
axial bounce time (O. l p, s). Adiabatically-created test
wells (ACTW) are generated by slowly ram in (10 s)
the test well depth from zero to its final value with the

p asma already present in the test well region. The fi-
nal plasma radius is approximately 1 cm, the final density
is np = 1.2 && 10 ~cm &~, and the plasma temperature is
6.8 eV.

The total charge, and thus the number of electrons
contained within the test well, equals the image charge
on the test well electrode, and is measured b ture y integrating

the image current which flows onto the test well 1 t d .eecro e.
igure s ows this total charge as a function of the test

well depth. The total charge in the test well increases
with test well depth for the adiabatically created test
well, but it decreases for the nonadiabatically created test
well. Hence the test well is shielded in the first case and
antishielded in the second.

When the right wall of the overall confinement well is
removed (step 5 in Fig. 3), electrons not trapped in the
test well are no longer confined and stream out along the
magnetic field lines. When the test well potential itself
is removed thee trapped electrons are also released, and
this tra ed charpp ge can be measured by monitoring the
test well electrode image current. Because o changesf
in the self-consistent response of the plasma itself, the
trapped charge that remains after the free charge escapesa

free charge is also present. As shown in Fig. 4, the
trapped charge increases linearly with test well depth for
shallow, adiabatically created test wells. In contrast little
charge is trapped by shallow nonadiabatically created
test wells. All measurements were made within 1 ms of
step 3 see Fig. 3). (Note that Fig. 4 shows the initial
trapped charge; irregular instabilities are present in the
nonadiabatic case that trap electrons. The onset of these
instabilities occurs more rapidly as the test well depth is
increased, and interferes with our nonadiabatically created
well measurements for well depths re t hs greater t an ten
volts. The instabilities also prevent us from analytically
predicting the nonadiabatic response. )

When the test wells are adiabatically created, electrons
are efficiently and automatically trapped by a transit time
mechanism. The mechanism is discussed by Lifshitz and

itaevs ii t7]: Consider a slow-moving electron entering
a slowly deepening test well. Although the electron
gains kinetic energy while entering the test well and
loses kinetic energy while climbing out of the test well
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FIG. 3. Test well creation schemes. For clarit the o 1
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its kinetic energy remains constant inside the test well,
even when the test well depth is varying. If during the
electron transit time At the well depth has increased
sufficiently, the electron will not be able to climb out
of the well ~ Specifically, the electron will be trapped
when Ep ( eAt d4 /dt, where Ep is the electron's initial
kinetic energy outside the test well, e is the electron
charge, and 4 is the effective test well depth. Since
this mechanism is very general, it will occur regardless of
whether the test charge is slowly increased in magnitude
in place, or slowly introduced from outside the plasma.

The exact plasma response to an adiabatically created
test well is most easily calculated with the use of the
bounce adiabatic invariant J = g v, dz, and relies on the
fact that the initial velocity of each electron (vp) is a
constant of the motion for that electron. Consequently,
the distribution functions inside and outside the test well
are given by f (v ) = fp[vp(v, 4' )] and f,„,(v,„,) =
fp[vp(v„, , 4 )], respectively, where &0 is the well depth,
v is the velocity in the well, v„, is the velocity outside
the well, and fp is the initial density distribution function.
The densities inside n (4 ) and outside n,„,(4 ) the well
can be found by integrating the appropriate distribution
functions.

The complete derivation of the plasma response is too
long to be included here. However, it is easy to show that,
to first order, the number of trapped electrons increases
as Q4, where the square root rejects that the trapping
depth is itself proportional to Q4 . Consequently, trap-
ping (and shielding) is inherently nonlinear, and there is
no limit in which the trapped population can be ignored.
However, to first order, the free population decreases as
J4 . These two square root terms cancel, and it can be
shown that the net density inside the well increases lin-
early [7] with 4, namely, n = np(1 + e4 /kT)

Calculation of the complete plasma response to an
external potential is complicated by self-consistent effects.
As the plasma density changes, it modifies the effective
well depth. The self-consistent well depth 4 (V ) can be
found by solving the equation

observed radial profile in this paper. A more detailed
study of 3D effects will be reported in a future paper.

The predicted charge inside the well Vn [4„(V )]
is graphed in Fig. 4 (V is the volume of plasma in
the well). There are no fitted parameters in the theory.
When the free charge is released, the self-consistent
problem changes. The remaining trapped charge is
found by solving the equation for the self-consistent
well depth, @r(V ) = V + 4~;„,(&T). The predicted
trapped charge Vnr[&PT(V )] is also graphed in Fig. 4.
Note that the charge trapped before the release of the
free electrons, Vnr[4& (V )], can be substantially greater
than Vnr[@T(V )], and that self-consistent effects ac-
count for the linear rather than square root dependence of
nr[@z.(V )] on V. .

Collisional processes eventually Maxwellian distribute
the plasma, and the plasma equilibrium will gradually ap-
proach the standard Debye form. As shown in Fig. 5, plas-
mas subjected to both adiabatically and nonadiabatically
created wells approach nearly the same final equilibrium,
with the small differences in the final state likely due to
differences in the final temperatures. The relaxation takes
approximately 1 s, substantially longer than the collision
time for the initial plasma. The slowness of the relaxation
probably results from the high velocity of the free electrons
while in the well; this high velocity reduces their colli-
sional cross section. The gradual evolution that continues
to beyond 10 s is due to global expansion of the plasma.

When Eq. (1) is linearized for small V, we find that
the resulting density is

n = np(1 + eV /kT) .

This is identical to the density predicted by linearizing
the Boltzmann relation n = np exp(eV /kT). Because of
this numeric coincidence, most results, including deriva-
tions of Debye shielding, that mistakenly or implicitly use
the Boltzmann relation will still be correct in the colli-
sionless regime. However, the Boltzmann result increases

1.0—

where V is the externally applied test well depth,
4„;„,(4 ) is the potential of the plasma residing inside
the well, and 4„„,(4 ) is the potential of the plasma
residing outside the well. Thus 4~;„, —4~, , is the
potential drop across the well boundary resulting from
the plasma itself. A more complete calculation of the
self-consistent well depth would take into account the
finite radial extent of the plasma; since the plasma
radius is greater than a Debye length, the self-consistent
response varies at different radial positions. Such three-
dimensional effects (3D) are minimized in our plasma
because the plasma radius is only 1.9 Debye lengths
across, and we employ a response averaged over the

CD
CD
L
G$

C3
o
CO
D
CL

0.5—
I—
CD

lO
Q)

CC

. ~- -o- — 8 -0&

gal

1 OV Well, non-ACTW
10V Well, ACTW
40V Well, non-ACTW
40V Well, ACTW
80V Well, non-ACTW
80V Well, ACTW

0 0 I I I I 1 I I I I I I II l I I I I I III I I I I I I III

103 102 10~ 10O

Time (s}

FIG. 5. Trapped charge normalized by total charge vs time for
adiabatic and nonadiabatically created test wells, demonstrating
the approach to eqUilibrium.
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FIG. 6. Total charge vs well voltage. The "dynamic shield-
ing" measurements were made immediately (I ms) after the
test well was adiabatically created, while the "Debye shield-
ing" measurements were made after the plasma collisions were
Maxwellian distributed, 1 s after the well was created. The
lines are calculated from the theory described in the text.

exponentially with V, while the numerically determined
solution of Eq. 1 remains roughly linear. Thus nonlinear
Boltzmann based, classic Debye shielding is stronger and
more complete than transit-time trapping-based, dynamic
shielding. As shown in Fig. 6, large exterior well voltages
V are better shielded (larger perturbed density) as colli-
sions change the response from the dynamic to the Debye
shielding regimes. The Boltzmann theory curve shown in
Fig. 6 is found by suitably modifying Eq. (1).

In conclusion, we have shown that collisionless shield-
ing in one-dimensional plasmas relies on transit-time trap-
ping. Without trapping, the plasma antishields a positive
test charge. Since the electrons in highly magnetized plas-
mas respond one dimensionally, dynamic shielding is quite
common.

The trapping mechanism discussed in this Letter also
modifies the shielding response in two and three dimen-
sions. For example, contrary to the result in the literature
[6], collisionless plasmas shield line test charges.

We have assumed here that the plasma ions are
immobile. If this assumption is relaxed, the ions will
eventually respond to the test charge. Because very
slowly moving ions will be entirely excluded from the
region around the positive test charge, the response
of the ions will follow the Boltzmann distribution [6].

Although the physics is different (still collisionless), the
ions will shield the test charge in a manner akin to the
standard Debye shielding result. Similarly, electrons will
be excluded from the region around a negative test charge,
and Debye-like shielding will result [6].

This work illustrates a problem by solving the Vlasov
equation by linearization. Because the number of trapped
particles scales as the square root of the perturbed po-
tential, the number of these particles is not small [12].
The correct solution of the Vlasov equation requires that
the number of trapped particles and the mechanism by
which they are trapped be carefully considered. Where
trapped particles are suppressed or otherwise controlled,
such as for our nonadiabatically created wells, lineariza-
tion of Vlasov's equation fails, and unusual phenomena
like antishielding, double layers, and BGK modes occur.
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