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Pulse-Coupled Relaxation Oscillators: From Biological Synchronization to
Self-Organized Criticality
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It is shown that globally coupled oscillators with pulse interaction can synchronize under broader
conditions than widely believed from a theorem of Mirollo and Strogatz. This behavior is stable
against frozen disorder. Beside the relevance to biology, it is argued that synchronization in relaxation
oscillator models is related to self-organized criticality in stick-slip-like models.

PACS numbers: 05.45.+b, 05.40.+j

Large assemblies of oscillator units can spontaneously
evolve to a state of large scale organization. Collective
synchronization is the best known phenomenon of this
kind, where after some transient regime a coherent oscil-
latory activity of the set of oscillators emerges. This ef-
fect has attracted much interest in biology for the study of
large scale rhythms in populations of interacting elements
[1]. The southeastern fireflies, where thousands of indi-
viduals gathered on trees flash in unison, is the most cited
example [2]. Other examples are the rhythmic activity
of cells of the heart pacemaker, of cells of the pancreas,
and of neural networks [2—4]. Most of the works on syn-
chronization have used models in which the interaction
between the oscillators is smooth and continuous in time
(see, e.g. , [5]). Comparatively, few analytical results are
known on models where the interactions are episodic and
pulselike [1,3,6,7], although they are relevant to several
biological situations as fireflies and neural networks. This
Letter deals with the emergence of synchronization in a
very simple model of globally coupled integrate and fire
(IF) oscillators; see Eq. (1) for the definition and [2]. It is
shown that synchronization occurs under broad conditions
on the properties of the oscillators, thus generalizing a the-
orem of Mirollo and Strogatz [1], the usual interpretation
of which restricted the synchronization conditions in a too
drastic way. Furthermore, I show that the synchronized
state is stable against a frozen disorder of the oscillator
properties, a subject much studied in models with contin-
uous interaction [5]. This result is different from that of
a previous study [7] on a closely related model.

Besides synchronization, another form of collective or-
ganized behavior is known to occur in large assemblies
of elements with pulse interaction, that is, self-organized
criticality (SOC). This concept has been proposed in [8]
to describe out of equilibrium systems that are generically
critical, i.e., that organize into a scale invariant critical
state spontaneously, without tuning of a control parame-
ter. Systems displaying SOC are externally driven with
a drive slower than any other characteristic time. These
models are made critical by the choice of a threshold dy-
namics that forbids them to follow adiabatically the exter-

nal drive. They can be modeled as coupled map lattices
and can be divided into two subclasses based on the con-
cept of oscillators. In subclass (a) the external drive acts
globally and continuously on all the lattice sites of the
coupled map, until one of them reaches the threshold, in
which case it relaxes to zero: Each site is therefore a re-
laxation oscillator. These are the stick-slip-like models
[9]. They are deterministically [9] or not [10,11] driven
systems, for which no conserved quantity is known, and
can exhibit SOC even when they are dissipative [9]. The
systems of subclass (b) are driven at each time step by
the increment of a unique site, so that sites are not os-
cillators. These are the sandpilelike models [8,12]. The
model studied in this Letter is a simple model of firefiies
flashing and is a mean field version of class (a) models.
As this mean field approach suggests, we argue in the fol-
lowing that there is a close relationship between SOC and
synchronization [10,11,13].

The biological mechanisms controlling the

fireflie

flashing have been extensively studied (see [2] for a
review) by testing the response of an isolated insect
to single or periodic Gashes of light. It appears that
there are several mechanisms for synchronization and
entrainment among the different species, so that no gen-
eral conclusion can be drawn about both the mechanism
and the biological function of synchronized flashing. It
is therefore interesting in this context to study under
which general conditions a synchronization may emerge
in relaxation oscillator models. Experiments indicate
that the rhythmic spontaneous flashing of the fireflies
is, in general, governed by a flash-control pacemaker in
the brain, cycling as an oscillator with a given intrinsic
rhythm between a basal level of excitation (state variable
of the oscillator) and a fully excited flash-triggering level
[2]. After each fiash the state variable resets quickly to
the basal level. Light-flash stimuli on a single firefly
have different effects depending on the species. This
has motivated the introduction of essentially two models,
the phase advance and phase delay models [2]. In the
phase advance model, the effect of a pulse of light is
to advance the flashing of each insect pushing the state
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variable towards the threshold. Flashing delay relative
to the intrinsic rhythm is impossible in this case. This
accounts for the behavior of at least two species, Photinus
Pyralis and Photinus concisus, which, however, display
only transient synchrony, possibly because these species
are rover [2]. On other species, as P cribe. llata, a pulse
of light inhibits the oscillator, thus delaying the next
Hash. This is interpreted in the phase delay model as
the resetting of the state variable to the basal level. In
this model, advance or delay of Hashing is possible. Let
us mention that other firefly species have behaviors that
cannot be described by any of these two models. The
model we study in the following [1,10] is equivalent to
the phase advance model.

The mean field model. —It consists of N relaxation
oscillators 0; represented when they evolve freely by
a state variable E; = E(t) H [O, E, = 1], monotonically
increasing in time with period 1. The interaction is so
defined that when E; «1 it relaxes to zero and increments
all the other oscillators by a pulse n/N:

0,
F~+ nN,

where n H [0, 1] is a dissipation parameter. The model
is taken into the slow drive limit by assuming that any
avalanche of firings, i.e., any succession of firings trig-
gered by the relaxation of one oscillator, is instantaneous.
We assume a supplementary rule that in most circum-
stances does not change the behavior of the system but
simplifies the discussion. This is the so-called absorption
rule of [1],which is equivalent to a reaction death time of
the oscillators immediately after their relaxation. This is
taken into account by assuming that oscillators within the
same avalanche are not incremented by the pulses result-
ing from the following relaxations in the avalanche.

The theorem of Mirollo and Strogatz [1] that applies
to this model states that for a convex function E; = E(r)
the system synchronizes completely but for a set of
initial conditions of Lebesgue measure null. Although
the validity of this theorem cannot be questioned, we will
see in the following that for all the physically interesting
situations the system synchronizes even for a linear and a
range of concave functions E(t).

Let us call a configuration as the set of ordered distinct
values Fi ( F2 ( . . . ( Fm, = 1 of the state variables(j) (j) (j)

present in the system just before the (j + 1)th avalanche.

To each E; corresponds a group of N oscillators(j) (j)

at this value (P, ='& N = N). Let us call a cycle as
the time necessary for all the mj groups to avalanche
exactly once. To trace the evolution of the system, it
is useful to follow, cycle after cycle, the gaps s;(j)

E;+] —F; between the values of successive groups. If(j) (j)

one of these gaps s; becomes smaller than the value(j)

nN;+~/N of the pulse of the (i + 1)th group, then the(j)

ith group gets absorbed by the (i + 1)th group. For a

P(s)ds = N(1 —e ), N » 1 . (2)

The absorption process of oscillators into groups takes
place as long as there is at least one such gap. It follows
directly from (2) that this is typically the case when
a ) 1/N [10]. Initial configurations of values where
no gap is smaller than n/N are, in principle, possible,
but for large systems with an O(e ~) probability of
occurrence. In conclusion, the set of linear oscillators
completely synchronizes almost always, when n is of
order 1 compared to N. The reason why this is not in
contradiction with the theorem of Mirollo and Strogatz
is that their recursive demonstration requires that two
single oscillators synchronize. While this is the case for
convex oscillators, it is not so for linear and concave ones.
However, I disagree with the ususal interpretation of the
theorem of Mirollo and Strogatz as the impossibility of
synchronization for nonconvex oscillators: In fact, this
theorem tells nothing in this case. In [6], it was noted that
convexity is not necessary for synchronization in the case
of a model with transmission delays. We see here that this
condition is not even necessary. Moreover, even concave
oscillators can synchronize, provided that the concavity
is not too large. In this case, positive feedback is in
competition with concavity that has, for effect, to increase
the gap between groups as they approach the threshold.

linear E(t), an elementary calculation shows that the gap
between a group i + 1 and a smaller one i is reduced
during one cycle by 6s; = In(N; —N;+I)/N~. Therefore
large groups unavoidably absorb the smaller ones that
follow them and become larger and larger [14]: It is this
positive feedback that leads to synchronization. The only
way to stop this mechanism and therefore the evolution
towards synchronization is to get a configuration where
all groups are of equal size. Apart from the random
initial conditions, where all the groups are of size 1,
it is exceptional for large N to be stuck during the
evolution in such a state. It is, in fact, a difficult task
to calculate in general the probability for this situation
to occur, but, first, extensive numerical calculations show
that this is indeed exceptional even for small N; second, it
is even a physically ill-defined question, since it depends
on the factorization of N; and, third, if one imagines
that the oscillators are not exactly identical, the slightest
splitting between their pulse intensities forbids any 6s;
to vanish. Therefore to see if the system does not
get stuck in the initial configuration, the only relevant
question is whether it is possible with random initial
conditions to get groups larger than one during the first
cycle. The probability for pair formation may easily
be computed from the Poissonian distribution P(s)ds =
Ne ~'ds (N && 1) of gaps s between the N random

numbers E; in [0, 1]. The number of oscillator pairs
(&)

in the random initial values satisfying the synchronizing
conditions s ( n/N is then

n/N
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For small concavities positive feedback prevails, whereas
for larger concavity groups are not able to grow. This
process can be seen on the class of concave functions
E(t) = t', a ) 1. Let us call x, = 1 —(1 —nn/N)'/'
the value of the phase difference between two successive
groups of n and m oscillators (n ) m) below which the
first group absorbs the second one. The first return map
of the phase difference x; between these two groups when
the largest one gets to the threshold [i.e., the state value
of the second group is (1 —x;)'] has an attractive fixed
point xp. The condition for synchronization is xp ( x, .
For a fixed pulse n/N there is an upper value for the
concavity a,„= 1 —log(1 —n/N)/log2 below which
the preceding condition is fulfilled for all group sizes
n ) m. In this case the system synchronizes as with
linear oscillators. Since a „is the most stringent bound,
we expect that synchronization almost always occurs for
a larger range of values of a. This has been extensively
verified numerically [11].

Up to now, all the oscillators were identical. However,
it is known that firefly populations have a spread of indi-
vidual frequencies [2]. Therefore it is necessary to show
that the phase delay model accounts for synchronization
even in this case.

Frequency distribution. —Different frequencies may be
allowed in IF models by keeping an identical threshold
for the oscillators, but letting them have different slopes
E;(r) = a, r, E; H [0, 1], so that the a s are the internal
frequencies. Positive feedback here is also the effective
mechanism leading to synchronization for small disorder
of frequencies. For larger frequency dispersion the for-
mation of large groups is not always possible, since two
oscillators relaxing together at one moment do not nec-
essarily relax again together at the next cycle. In fact,
two questions must be answered: First, can stable groups
exist, and, second, can such groups be formed during
the evolution? As we will see, this second point is not
problematic and stability is the most stringent condition
for the emergence of synchronization. Let us first no-
tice that a necessary condition for the stability of a group
of n oscillators is that the relaxation of the fastest one
triggers the avalanche of all the others. Therefore sta-
ble groups must fire at the rhythm of the elements with
highest frequency. Let us now study the stability of a
group of n + 1 elements in the background of the other
N —(n + 1) oscillators, assuming that the subset of the n

first ones, OI, . . . , O„of frequencies aI ) . - ) a„ is sta-
ble, and that the (n + 1)th oscillator 0„+t has the lowest
frequency a„+]. Assuming that 0&, . . . , 0„,0„+I have just
relaxed together, the condition for again relaxing together
after a cycle is

of stability for a group of n + 1 oscillators is

aI —a; A~ (i —1)—, t/i = 1, . . . , n + 1 . (4)
a] W

Therefore, given a system of N oscillators with a random
uniform distribution of frequencies centered on a with
width D = a „—a;„, the probability that the whole
system remains stable is

Piv(D/a rr) = p da)
a',

/

daN e
N--1

0. 8-

0. 6-

0. 4-

0. 2-

N —1(. + 1)j—1

(/ ~e ")', (&)J'
where p = N/D and 6 = na, „/N On. e can see in
Fig. 1 that even for large D/a there is a relatively high
probability to have a realization of frequencies allowing
complete synchronization as long as n is not too small, in
which case the system decouples and synchronization is
less probable. One can verify that when the probability
PN is not vanishingly small it is almost independent of
N for large N (—100). Now we will see that any two
stable groups of oscillators will, at some moment, relax
together. Although positive feedback is still acting as in
the case of identical oscillators, it is in competition with
disorder that tends to desynchronize groups. However,
contrary to the case of identical linear oscillators, it is easy
to show that the dispersion of frequencies implies that the
relative positions of any two groups change monotically
in time. Therefore at some moment the two groups must
relax together. If their union is itself stable, it forms a
unique stable group. This proves that if the distribution
of frequencies fulfills the stability conditions, Eq. (4), the
system completely synchronizes. If this condition is not
satisfied, there is partial synchronization: the subsystems
that individually fulfill Eq. (4) synchronize. Extensive
numerical simulations confirm all these conclusions [11].

0.1 0. 2 0. 3
D/a

0.4 0. 5

where 5 is the summed strength of the pulses of all the
other oscillators. Therefore the most stringent condition

FIG. 1. Plot of the probability Pz, Eq. (6), for different
dissipation levels. From top to bottom n = 0.5, 0.4, 0.3, 0.2, 0.1.
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It is natural to think of other kinds of frozen disorder.
For instance, the pulses do not necessarily need to be
of the same strength, and also the oscillators may have
different threshold values. As expected, and for similar
reasons as those previously explained for the case of
a spread of frequencies, synchronization occurs also in
this case and even for strong disorder. These results are
different from the conclusions in [7], where for a similar
but different model the completely synchronized state is
unstable even against weak disorder.

Lattice models. Besides synchronization or quasisyn-
chronization, lattice models of pulse-coupled oscillators
may display SOC. This is the case for the models of
class (a), for which, however, SOC seems to be related
to a tendency to synchronization [10,13]. SOC also ap-
pears when a system is perturbed, which otherwise should
synchronize totally or partially [10,11], or which should
be periodic [15]. The most striking example of class (a)
models is the Olami-Feder-Christensen (OFC) model [9]
that consists of oscillators E; on a square lattice that re-
lax to zero when they exceed a given threshold E, , thus
incrementing their nearest neighbors by a pulse which is
n (n ~ I/4) times their value:

E, 0,E„„~ E „+oE;.
With open boundary conditions this model shows SOC,
while the Feder-Feder (FF) model [16], which is identi-
cal but for the increment, which is a constant that can be
seen as the mean of nF; (pulse of the FF model = 6 =
nF.;), shows partial synchronization [10,11] (not SOC as
claimed in [16]). This clearly means that the randomness
of the initial conditions, which is dyamically eliminated
in the FF model while it is mantained via the increment
in the OFC model, changes the behavior of the system
from partial synchronization to SOC. Furthermore, dif-
ferent kinds of perturbations incompatible with a periodic
behavior change periodically ordered states for SOC. If,
for instance, a random noise is added to the increment in
the FF model, synchronization disappears and the system
becomes SOC [10]. On the other hand, if, instead of open
boundary conditions, periodic conditions are used, SOC
disappears in favor of a periodic state, the period being
the number of sites of the lattice [15]. It reappears if one
inhomogeneity is introduced on the lattice [15]. Extensive
numerical simulations [11] show that large avalanches
are spatially quasistable. This means that during activa-
tion cycles of the oscillators sites participating in large
avalanches are synchronized. Thus the system finds a
compromise between synchronization and SOC, although

this seems contradictory since SOC is incompatible with
complete synchronization [11,13].

In this Letter I have shown that in the mean field
relaxation oscillator models such as the IF phase advance
model synchronize under not as constrained conditions
as suggested by the usual (erroneous) interpretation of
the Mirollo and Strogatz theorem. Moreover, disorder,
which is a constant of the real world, does not spoil
synchronization in this model, opening the prospect of a
larger applicability of IF oscillator models and of variants.
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