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Short Wavelength Bifurcations and Size Instabilities in Coupled Oscillator Systems
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We report the presence of short wavelength bifurcations from synchronous chaotic states in coupled
oscillator systems. The bifurcations immediately excite the shortest spatial wavelength mode present in
the system as the coupling between the oscillators is increased beyond a critical value. An associated
size instability places an upper bound on the number of oscillators that can support stable synchronous
chaotic oscillations; an exact expression is given for the upper bound. Results are demonstrated with
numerical simulations and electronic circuits.

PACS numbers: 05.45.+b, 03.20.+i, 05.50.+q

Coupled oscillator systems are models of choice in
fields ranging from laser physics [1] to the gait of an ani-
mal's walk [2]. Basic issues in spatiotemporal behavior
have been raised and decided through their study. In-
creasingly, the roles of chaotic behavior and its control
have been the focus of coupled oscillator studies [3]. Our
interest in coupled oscillators has stemmed from the at-
tainment of synchronous chaotic behavior [4] and the de-
sire to better understand the conditions under which this
behavior can exist. In this Letter we address a related
issue —that of bifurcations from synchronous chaotic
states in coupled oscillator systems. In particular, we re-
port what we call short wavelength bifurcations. These
bifurcations immediately excite the shortest spatial wave-
length mode present in the system as the coupling between
the oscillators is increased beyond a critical value. This is
contrary to other pattern forming bifurcations, which typi-
cally excite long or intermediate wavelengths [5]. Simi-
lar bifurcations have been reported in numerical studies
of coupled map lattices [6], however, no systematic treat-
ment of the bifurcations has been carried out. Also, there
have been experimental observations of a "short wave-
length instability" in an array of vortices [7]. This in-
stability is distinct from the short wavelength bifurcation
we report in two principal ways: (i) Our bifurcation ema-
nates from a uniform chaotic state, and (ii) our bifurca-
tion excites the shortest wavelength Fourier mode in the
system. We observe short wavelength bifurcations in nu-
merical simulations of diffusively coupled oscillators and
in corresponding circuits. We also discuss an associated
size instability that occurs in systems that exhibit short
wavelength bifurcations. This instability limits the num-
ber of oscillators capable of sustaining stable synchronous
chaos. We give a simple analytic expression for the maxi-
mum size in terms of measurable properties of the two os-
cillator case.

For the phenomena studied in this Letter we consider
N identical diffusively coupled nonlinear oscillators with
periodic boundary conditions,

u, = f(u, ) + cI (u, +i + ui i
—2u, ),

j =0, 1, . . . , N —1,

k = 0, 1, . . . , N —1. (3)

This result is also derived in [9]. It is shown in [10] that
diagonalization via Fourier mode expansion is possible for
any coupled oscillator system whose coupling configura-
tion is shift invariant a requirement met by (1).

Because the g, are real and Re(gk) and Im(gq) satisfy
the same equation, only the k = 0, 1, . . . , N/2 equations
need to be considered to decide the stability of the
synchronous state (here and throughout we assume N is
even). The highest wave number (shortest wavelength)
mode occurs at k „=N/2. The k = 0 mode governs
motion on the synchronization manifold. This mode has
Lyapunov exponents A] ~ A2 ~ . ~ A„, which are also
those of a single oscillator exhibiting the solution s(t)
The synchronized state is chaotic if A& ) 0. The k ) 0
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where u, E: R", the function f: IR" ~ R" is nonlinear
and capable of exhibiting chaotic solutions, c is a scalar
coupling constant, and I' = diag(y&, y2, . . . , y„) is a con-
stant diagonal diffusion matrix with elements 0 ~ y; ~ 1.
By analogy with coupled map latices Eq. (1) might be
called a "coupled How lattice. " Such equations could rep-
resent, for example, a discrete reaction-diffusion equation
with n species [5]. Similar equations were studied by
Turing [8] in an effort to explain symmetry breaking in
the development of living organisms.

We are interested in bifurcations from synchronous
chaotic states; these states reside on a synchronization
manifold defined by 94 = (uo = u~ = . = u~
s(t)), where the chaotic solution s(t) satisfies the isolated
oscillator equation s = f(s). The synchronization mani-
fold 3H has the dimension of a single oscillator (n) and is
invariant under the liow (1). Stability of the synchronous
state can be determined by letting u, = s + $, and
linearizing (1) about s(t). This leads to

6, = Df(s)4, + cr(F,„+6, , —24, ), (2)

where Df(s) is the Jacobian of f on s(t). Linear
stability equations such as (2) can be diagonal-
ized by expanding into spatial Fourier modes,
(I/~N) P„o gee 2 ""t~. Carrying this out gives

itk = [Df(s) —4c sin (~k/N)I ]qk,
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in Fig. 1). It is desirable to know when this can occur,
without having to integrate Eqs. (3). Here we outline a
method to determine the .sign of AI(c, 2) as c becomes
large. The result can be used to support or rule out
candidates for the SWB. While AI(c, 2) ) 0 for large c
does not guarantee the SWB, since AI(c, 2) may always
be positive (e.g. , z coupling in Fig. 1), A&(c, 2) ( 0 for
large c does rule out the SWB [18]. First, redefine
the time in the k = 1, N = 2 variational equation (3)
r = 4ct Th. is gives dry/dr = [—I + eDf(s)]rt, where
e = 1/(4c). The idea is to compute the largest Lyapunov
exponent of this equation via perturbation theory. The
details of the calculation are presented in [10]. Here, due
to space limitations, we simply state the result. Define
the average sub-Jacobian on s(t), (Jp) = P(Df)P (for x
coupling P is a projection matrix onto the y-z subspace,
and similarity for other coupling choices). Then the
largest Lyapunov exponent of the k = 1, N = 2 stability
equation is, to first order in e, AI(c, 2) = e Re(p,„),
where p,„ is the eigenvalue of (Jp) with the largest real
part. The condition for stable sychronous chaos is simply

p „(0. This result correctly predicts the sign of the
x-, y-, and z-coupling cases [10]. The stability condition
is similar to the condition for stable synchronous chaos
in one-way driving configurations [4], namely, that the
conditional Lyapunov exponents are negative.

In summary, we have described a bifurcation from
synchronous chaos in spatially extended systems that
is capable of generating structure at the scale of the
resolution of the spatial lattice. This short wavelength
bifurcation is observable in simulations and coupled
analog circuits. SWBs could play a role in strongly
coupled pattern forming systems. In addition, control
of behavior near SWBs may be problematic, possibly
requiring a large number of control sites along the spatial
lattice. Whenever a diffusively coupled system exhibits
a short wavelength bifurcation, one can expect a size
instability to occur as the array size increases beyond a
critical value. This critical size can be predicted from
measured properties of a two oscillator array.
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