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We report the presence of short wavelength bifurcations from synchronous chaotic states in coupled
oscillator systems. The bifurcations immediately excite the shortest spatial wavelength mode present in
the system as the coupling between the oscillators is increased beyond a critical value. An associated
size instability places an upper bound on the number of oscillators that can support stable synchronous
chaotic oscillations; an exact expression is given for the upper bound. Results are demonstrated with

numerical simulations and electronic circuits.
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Coupled oscillator systems are models of choice in
fields ranging from laser physics [1] to the gait of an ani-
mal’s walk [2]. Basic issues in spatiotemporal behavior
have been raised and decided through their study. In-
creasingly, the roles of chaotic behavior and its control
have been the focus of coupled oscillator studies [3]. Our
interest in coupled oscillators has stemmed from the at-
tainment of synchronous chaotic behavior [4] and the de-
sire to better understand the conditions under which this
behavior can exist. In this Letter we address a related
issue—that of bifurcations from synchronous chaotic
states in coupled oscillator systems. In particular, we re-
port what we call short wavelength bifurcations. These
bifurcations immediately excite the shortest spatial wave-
length mode present in the system as the coupling between
the oscillators is increased beyond a critical value. This is
contrary to other pattern forming bifurcations, which typi-
cally excite long or intermediate wavelengths [5]. Simi-
lar bifurcations have been reported in numerical studies
of coupled map lattices [6], however, no systematic treat-
ment of the bifurcations has been carried out. Also, there
have been experimental observations of a ‘“‘short wave-
length instability” in an array of vortices [7]. This in-
stability is distinct from the short wavelength bifurcation
we report in two principal ways: (i) Our bifurcation ema-
nates from a uniform chaotic state, and (ii) our bifurca-
tion excites the shortest wavelength Fourier mode in the
system. We observe short wavelength bifurcations in nu-
merical simulations of diffusively coupled oscillators and
in corresponding circuits. We also discuss an associated
size instability that occurs in systems that exhibit short
wavelength bifurcations. This instability limits the num-
ber of oscillators capable of sustaining stable synchronous
chaos. We give a simple analytic expression for the maxi-
mum size in terms of measurable properties of the two os-
cillator case.

For the phenomena studied in this Letter we consider
N identical diffusively coupled nonlinear oscillators with
periodic boundary conditions,

l:tj = f(llj) + CF(I/{]'+| + I/tj_] - 214]‘),

Jj=01,...,N — 1, 1)

where u; € R”, the function f : R" — R”" is nonlinear
and capable of exhibiting chaotic solutions, ¢ is a scalar
coupling constant, and I" = diag(y,, y2,...,¥s) is a con-
stant diagonal diffusion matrix with elements 0 = y; = 1.
By analogy with coupled map latices Eq. (1) might be
called a “coupled flow lattice.” Such equations could rep-
resent, for example, a discrete reaction-diffusion equation
with n species [5]. Similar equations were studied by
Turing [8] in an effort to explain symmetry breaking in
the development of living organisms.

We are interested in bifurcations from synchronous
chaotic states; these states reside on a synchronization
manifold defined by M ={uy=u; = -
s(t)}, where the chaotic solution s(z) satisfies the isolated
oscillator equation s = f(s). The synchronization mani-
fold M has the dimension of a single oscillator (n) and is
invariant under the flow (1). Stability of the synchronous
state can be determined by letting u; = s + £; and
linearizing (1) about s(z). This leads to

£ = Df($)E; + T + €521 = 2£), ()
where Djf(s) is the Jacobian of f on s(z). Linear
stability equations such as (2) can be diagonal-
ized by expanding into spatial Fourier modes, ¢&; =

(1//N)SNZ) pee 2mik/N  Carrying this out gives
e = [Df(s) — 4c sin*(wk/N)T ]y,

= Un—| =

k=0,1,...,N — 1. 3)

This result is also derived in [9]. It is shown in [10] that
diagonalization via Fourier mode expansion is possible for
any coupled oscillator system whose coupling configura-
tion is shift invariant—a requirement met by (1).
Because the £; are real and Re(7,) and Im(%;) satisfy
the same equation, only the £ = 0,1,...,N/2 equations
need to be considered to decide the stability of the
synchronous state (here and throughout we assume N is
even). The highest wave number (shortest wavelength)
mode occurs at kp,x = N/2. The & = 0 mode governs
motion on the synchronization manifold. This mode has
Lyapunov exponents A] = A3 = ... = A9, which are also
those of a single oscillator exhibiting the solution s(z).
The synchronized state is chaotic if Al > 0. The k >0
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modes represent variations transverse to M. We define
the transverse Lyapunov exponents (TLEs) [11] for the
kth mode in a similar manner, A} = A = ... = AKCA
necessary condition for the stability of the synchronous
state is A¥ < 0 for all K > 0. In general, there is no
simple relation between the Lyapunov exponents on M
and those transverse to /M. A notable exception is the
case when I' is the identity (vector coupling). In this
case [9] /\f = /\? — 4c¢ sin®*(7rk/N), which shows that
synchronous chaos is always possible for large enough
coupling ¢. One of the main points of this Letter is that,
contrary to expectation, large coupling can destabilize
synchronous chaotic states when the diffusion matrix I'
is other than the identity.

The structure of Eq. (3) enforces relations between the
TLEs for varying mode number k& and varying number
of oscillators N. In particular, for a given diffusion
matrix I" all of the TLEs can be obtained from the
k =1 mode of the N = 2 oscillator case [12]. This
can be seen as follows. Let the TLEs for Eq. (3) be
denoted by )\f(c,N). Equation (3) can also be written
as 7, = [Df(s) — 4¢ sin®(ar /2)T" ]nz, which is recognized
as the linear stability equation governing the £ = 1 mode
for N = 2, with coupling coefficient ¢ = ¢ sin?(wk/N).
Therefore the TLEs satisfy the scaling relation

(e, N) = A}(c sin*(7wk/N),2). )
Generally we are interested only in the largest TLE for
each mode, A¥(c, N), which can be obtained from Al(c,?2)
by scaling the coupling constant ¢ according to (4). In
this way the stability of the synchronized state for any
size array can be determined by computing the single
curve Aj(c,2). This curve is generated most easily by
integrating (3) with £k = 1 and N = 2 and computing the
asymptotic growth rate of a randomly chosen initial vector
11(0) for each value of c.

For our numerical and experimental studies we let
u = (x,y,z) and focus on a variant of the Rossler system
[13], defined by

x = —(ax + By + 2),
y =x + 8y, %)
z =gk — z,

where g(x) = 0 for x = 3 and g(x) = ux for x > 3. This
system was studied in [10] and was independently in-
troduced in [14]. The piecewise linear term in the z
equation allows for easy circuit implementation (cf., [10]
for circuit diagram). Equation (5) has a chaotic attrac-
tor, both numerically and experimentally, for parameters
a =0.05 B =056 =0.133, and p = 15.0. Figure 1
shows the largest TLE AM(c,2) determined numerically
from (3) for x,y,z and vector coupling [T" = diag(1,0,0),
diag(0, 1,0), diag(0,0,1), and diag(l,1, 1), respectively].
Only the vector coupling case is monotonic with ¢. The
z-coupling case never synchronizes, while the x- and
y-coupling cases synchronize for ¢ > ¢; = 0.0315 and
¢ > 0.026, respectively (cf., inset). Similar figures have
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FIG. 1. Largest TLE versus coupling for first mode of coupled
modified Rossler oscillators (N = 2). Shown are curves for
x,y,z and vector coupling. Inset shows linear region for small
c¢. Coupling constants ¢; and ¢, are zero crossings of the
x-coupling curve.

been obtained by Pyragas [15] within the context of con-
tinuous feedback control. Experiments carried out with
N = 4 coupled electronic circuits [10] exhibit synchro-
nization thresholds in good agreement with the predictions
shown in Fig. 1.

In this Letter we are primarily interested in the
x-coupling case, which is seen to desynchronize for
¢ > ¢y = 0945. Figure 2 shows the largest TLEs of
mode 1 and mode 2 for N = 4 oscillators; these curves
are found from Al(c,2) by scaling ¢ according to (4).
Note the A%(c,4) = Al(c,2). This is a general feature of
the highest mode (k = N/2) curve; )\Ilv/z(c,N) = Al(c,2).
As ¢ increases, mode 2 destabilizes first at ¢ = 0.945,
followed by mode 1 at twice this value, ¢ = 1.89. We
call the event of passing through ¢ = ¢, from below a
short wavelength bifurcation (SWB). This bifurcation
immediately excites the smallest spatial scale in the
system—there is no cascading of energy from longer
wavelength scales. As shown below, the short wave-
length bifurcation can occur only when the array size N
is below a critical value.

Both numerical integrations and experiments with the
coupled modified Rossler system exhibit SWBs. Figure 3
shows the numerical and experimental power (P) in the
transverse modes as a function of time for N = 4 and x
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FIG. 2. Largest TLEs versus coupling for coupled modified
Rossler oscillators with x coupling (N = 4). Mode 2 desta-
bilizes first as ¢ increases.
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FIG. 3. Power in y component of transverse modes versus
time: (left axis) numerical simulation showing growth of
mode 2 following increase in ¢ at r = 50 cycles; (right axis)
experimental plot showing similar growth in mode 2 following
change in ¢ at ¢t = 0.

coupling, immediately following a change in the coupling
from just below to just above the SWB. The left axis
corresponds to the numerical calculation, while the right
axis corresponds to the experiment. The power was
computed from the y signals of the oscillators; x and
z signals give similar results. The time is in “cycles”
around an isolated attractor (1 cycle = 27 //B). Mode 2
is seen to destabilize in both cases, while mode 1 remains
near zero. (Only the numerical mode 1 is plotted for
clarity; the experimental curve is indistinguishable from
this curve at the scale of the figure.) The experiment is
seen to lose stability faster than the numerical calculation.
This is presumably due to larger fluctuations in the
experiment or imprecise tuning between the model and
the circuits.

Figure 4 shows the numerical attractors before and af-
ter the change in the coupling constant. After the change
to ¢ = 1.0 trajectories converge to one of two nonsyn-
chronous periodic attractors [identified with solid and
dashed lines Fig. 4(b)]. For a given attractor the peri-
odic motion of oscillator i is the same as that of os-
cillator i + 2 mod4. Since the array is shift invariant,
the two attractors are related by a simple shift of indices
i — i + 1 mod4. The spatial structure of each attractor
is + — +—, which matches the highest Fourier mode in
the four oscillator system [16]. The periodic attractors
are present simultaneously with the synchronous attractor,
hence the SWB is similar to a subcritical pitchfork bifur-
cation. In other systems, namely, the “standard” Rossler
system [13] with x coupling and the Lorenz system [17]
with z coupling, we have found supercritical SWBs.

The behavior of the TLE curves depends on the size of
the oscillator array. Systems that exhibit short wavelength
bifurcations, when scaled to large enough arrays N,
display a size instability that precludes the existence of
stable synchronous chaos for any value of c¢. Figure 5
shows a few of the TLEs for the N = 16 case [again
obtained from the scaling relation (4)]. The first zero
crossing of the lowest mode (k = 1) occurs just before the
second zero crossing of the highest mode (k = 8). There

¢ = 0.9, synchronous chaos; and (b) ¢ = 1.0, two periodic
attractors, one solid and the other dashed, with short wavelength
spatial variation.

is a very small region between the two zero crossings
(imperceptible in the figure) where synchronous chaos is
possible. For N > 16 this region disappears, as the zero
crossings pass through one another. From the scaling
relation (4) one can compute the array size, Npa, for
which the two zero crossings coincide. This yields the
largest array capable of sustaining stable synchronous
chaos. We wish to solve Al(c,N) = /\Ilv/z(c,N) = 0 for
N. Since Allv/z(c,N) = Al(c,2), the zero crossing occurs
at ¢ = ¢ (cf,, Fig. 1). Using the scaling relation (4) one
then has Al(cy, N) = Al(c, sin?(ar/N),2) = 0. It follows
that ¢, = ¢, sin’(ar/N), or

Niax = [w/sin’l(\/cl/cz)}, (6)

where [-- -] denotes integer part. For the x coupling case
above one finds Ny,x = 17, corroborating Fig. 5. Rela-
tion (6) holds for any diffusively coupled system whose
basic stability curve Aj(c,2) is qualitatively similar to the
x coupling curve in Fig. 1. Npy.x is determined uniquely
by the two zero crossings ¢; and ¢, which are easily cal-
culated (or measured) for the two oscillator system. Note
that the zero crossings are system dependent. In princi-
ple the larger zero crossing ¢, can be arbitrarily large,
yielding an arbitrarily large value of Ny,x. Therefore our
results are not necessarily limited to small arrays.

A necessary and sufficient condition for the SWB and
associated size instability is the existence of a positive
going zero crossing in the basic curve /\}(c,z) (e.g.,
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FIG. 5. TLEs for x-coupled modified Rossler system with
N = 16. Zero crossings of k =1 and k = 8 modes are
approximately the same, showing impending size instability for
N > 16.
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in Fig. 1). It is desirable to know when this can occur,
without having to integrate Egs. (3). Here we outline a
method to determine the sign of Al(c,2) as ¢ becomes
large. The result can be used to support or rule out
candidates for the SWB. While Al(c,2) > 0 for large ¢
does not guarantee the SWB, since Al(c,2) may always
be positive (e.g., z coupling in Fig. 1), Al(c,2) < 0 for
large ¢ does rule out the SWB [18]. First, redefine
the time in the kK = 1, N = 2 variational equation (3)
7 = 4ct. This gives dn/d7 = [-T + eDf(s)]n, where
e = 1/(4c). The idea is to compute the largest Lyapunov
exponent of this equation via perturbation theory. The
details of the calculation are presented in [10]. Here, due
to space limitations, we simply state the result. Define
the average sub-Jacobian on s(z), (Jp) = P(Df)P (for x
coupling P is a projection matrix onto the y-z subspace,
and similarity for other coupling choices). Then the
largest Lyapunov exponent of the k = 1, N = 2 stability
equation is, to first order in e, M(c,2) = &€ Re(Pman),
where pn.x is the eigenvalue of (Jp) with the largest real
part. The condition for stable sychronous chaos is simply
pmax < 0. This result correctly predicts the sign of the
x-, y-, and z-coupling cases [10]. The stability condition
is similar to the condition for stable synchronous chaos
in one-way driving configurations [4], namely, that the
conditional Lyapunov exponents are negative.

In summary, we have described a bifurcation from
synchronous chaos in spatially extended systems that
is capable of generating structure at the scale of the
resolution of the spatial lattice. This short wavelength
bifurcation is observable in simulations and coupled
analog circuits. SWBs could play a role in strongly
coupled pattern forming systems. In addition, control
of behavior near SWBs may be problematic, possibly
requiring a large number of control sites along the spatial
lattice. Whenever a diffusively coupled system exhibits
a short wavelength bifurcation, one can expect a size
instability to occur as the array size increases beyond a
critical value. This critical size can be predicted from
measured properties of a two oscillator array.
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manuscript. J. F. H. is supported by the National Research
Council and ONR.
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