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Origin of Pseudospin Symmetry
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A many-particle operator that affects a transformation to the pseudospin basis in heavy nuclei is
identified. Both mean-field and many-particle estimates demonstrate that in the helicity-transformed
representation the nucleons move in a finite-depth nonlocal potential with a reduced spin-orbit strength.
Because of the close relation between the helicity and chirality operations, the results suggest that the
pseudospin symmetry in heavy nuclei yields to the chiral symmetry of massless hadrons in the high
energy region.

PACS numbers: 24.80.Dc, 11.30.Rd, 21.30.+y, 21.60.Cs

(I) Introduction. The —pseudo spin-space concept in
nuclear theory [1,2] refers to a division of the single-
particle total angular momentum into pseudo (j = 1 + s)
rather than normal (j = 1+ s) orbital and spin parts.
Such a division is favored by the observed approxi-
mate degeneracy of pairs of single-particle states, [(l—
1), , (l + 1),+ & j with j = l —2, within the major shells of
heavy (A ~ 100) nuclei, where the spin-orbit interaction
is known to be strong [3,4]. [The latter stands in con-
trast to the relatively weak splitting of normal spin-orbit
doublets, 1l, , l, +~) with j = l —2, in light (A ~ 28) nu-
clei.] By assigning new l~ and l, +t labels to the (i —1)J
and (i + 1),+ ~ states (for example, a 1dsi2, g7i2) pair is as-
signed new [fsi2, f7i2) "pseudo" labels), an advantage is
gained because these paired states can then be interpreted
as members of a weakly split pseudospin doublet. Indeed,
the pseudospin and pseudospace quantum numbers appear
to be reasonably well conserved, supporting a picture of
heavy nuclei as systems with weakly broken (dynamical)
pseudospin symmetry. The oscillator shell model of all
pseudospin doublets within a major shell, augmented with
a quadrupole-quadrupole residual interaction, leads to the
many-particle pseudo-SU(3) theory for heavy deformed
nuclei [1,4,5]. The decoupling of the pseudospace and
pseudospin degrees of freedom has also been suggested as
a possible explanation for the existence of identical bands
in superdeformed nuclei [6].

Good pseudospin symmetry in heavy nuclei, while ex-
perimentally well corroborated and successfully used in
numerous theoretical applications (see [5] for references),
still lacks a sound microscopic justification. The usual un-
derstanding is based on the single-particle Hamiltonian of
the oscillator shell model, namely, on the "accidental" re-
sult that deviations from the oscillator spectrum approxi-
mately follow a 2j(j + 1) —l(l + 1) dependence, which
transforms into l(l + 1) under the normal ~ pseudo re-
labeling. Relativistic mean-field estimates were presented
[7] in support of such a dependence in the limit of large
nucleon numbers. Also, a unitary operator was proposed
[8] which acts on the spin and angle variables and accom-
plishes the normal ~ pseudo relabeling within a given

shell. Later this approach was revisited [9] and resulted in
the introduction of another operator which is specifically
designed for shell-model applications, being unitary only
within the normal-parity subspace of the oscillator [4,8].

This paper shows that the pseudospin symmetry, which
reveals itself on the single-particle (mean-field) level, has
a microscopic origin which is related to the nature of
the internucleonic forces, perhaps with roots in chiral
symmetry. A microscopic transformation that is different
from those mentioned above [8,9] while reducing to them
when restricted to a single major shell, is shown to fulfill
key requirements for the pseudospin transformation when
applied to the nucleus as a whole.

(2) Microscopic pseudospin transformation —To in. -

corporate both the single-particle and many-particle as-
pects of the pseudospin picture, a microscopic operator
that accomplishes the normal pseudo transformation
should be of the form

Utotaj— U(r;, p;, cr;),

where r; stand for the position, p; for the momentum,
and cr; for the Pauli spin matrices of the individ-
ual nucleons. The structure of U(r, p, cr) is fixed
by the following constraints: (a) 1 = Ul U

112 + 21 tr + 2 = 2j2 —12 + z(this sets the transforma-
tion rule [8]); (b) [U, j] = 0(rotational invariance); (c)
[U, 2 ] = [U, 2 ] = 0(parity and time-reversal symme-
try); (d) UUf = Uf U = l(unitarity and conservation of
observables); and (e) [U, p] = 0(translational invariance).

Once constraints (a), (b), (c), and (d) are applied, only
three distinguishable choices for U remain:

U = (d . df) 'i d,

d = (cosO rop + i sinO r/ro) . cr, (2)

where ro is a characteristic length, and due to the option
of rescaling ro, the value of 0 can be fixed at ~ 4, 0, or

The first choice yields the boson annihilation (+ 4)/
creation (—4) operator form that is specifically designed
for shell-model applications [9]. However, these two
operators are unitary only within a subspace of normal
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parity states while in the unique parity subspace their
action is undefined. When global unitarity is required, only
two possibilities remain. The case 0 =

2 corresponds
to the U„= i 0 . r/r operator (henceforth called the r
helicity) that was proposed in [8]. The 0 = 0 choice
is the p helicity U„= o. p/p. This is the only form
that is compatible with the constraint of translational
invariance and thus consistent with a realistic many-
particle theory that is not confined to the shell-model
approach. Additional arguments in favor of this choice
are given below.

(3) Single partic-le Hamiltonian and wave functions
If (1) accomplishes the pseudospin transformation, then
in addition to satisfying general constraints, it should
decouple the spin and orbital degrees of freedom in
the heavy nuclei. The applicability of the mean-field
approach allows for a reasonable direct check on this by
considering transformed single-particle Hamiltonians and
wave functions. Corrections for center-of-mass motion
are relatively small in heavy nuclei and therefore not
expected to worsen such an argument.

For simplicity a spherically symmetric field is consid-
ered. In this case the Hamiltonian and its wave functions
are given by

p
2

H = + V(r) + W(r)l
2M

(3)

(r) = Ul, p„~( (r) = i'R„JI(r)(Yt ~)~, (7)

where V(r) and W(r) are now strongly nonlocal functions
given by

V(r) = K[V(r) —2W(r) —(l + 1)v(r)]Kt, (8)

W(r) = K[v(r) —W(r)]K~I . o. , (9)
with

(r) = i'R„,&(r)(Y& g), (4)
where n is the radial quantum number (number of nodes),
Y~ is a spherical harmonic, and ~ is a Pauli spinor

(s = -).
In a coordinate representation the p helicity has the

following operator form:

U„= iK(l —A ——1) 'r(o. V), (5)
where (i+ A+ 21 (i —A&z=r r

2 ) 0 2 )
x I

(i+A+3~ (l —A —11
ri

2 ) ( 2

is unitary, l = 2[(1 + 4l ) 't2 —1] has the orbital mo-
mentum as its eigenvalues, A = r V' = rB/Br generates
shear, and I (x) denotes the gamma function. The unitarity
of K follows from the conjugation rules At = —(A + 3)
and lt = l. Then (3) and (4) transform into

2

H„= U„HU„= + V(r) + W(r)1 o,

v(r) = (l —A —1) ' [rV'(r) —(l + 2) rW'(r)]
X (i+ A+2) '

(primes denoting derivatives) and

i+A+3& l —A)

(i+A+31 (1
—

AjX
)

R„,i(r) .

Although (6) in its general form does not provide incon-
trovertible evidence for a reduction in the magnitude of
the spin-orbit splitting (see below), the latter is likely to
hold at low l within the nuclear surface region so long as
the effective value of the A operator exceeds l —1.

To qualitatively understand the behavior of R„,I (r), ob-
serve that the U~ transformation involves three consecu-
tive operations: a Fourier transform, a switch from l to
l, and an inverse Fourier transform, which together deter-
mine the mapping for the radial function. This mapping
generates the following universal behavior:

Rtl j$ r (I +3) (10)

The standard r' dependence in the interior region follows
because deep in the bulk of a heavy nucleus U(r) is not
expected to deviate significantly from the Oat behavior
of U(r). The r ~'+3 asymptotic behavior means a more
diffuse surface. This and strong nonlocalities in the
surface region come with the p-helicity transformation.

(4) Dirac Brueckner ap-proach and the helicity trans
formation. —A relativistic extension of the Brueckner
theory (see [10] for references) provides parameter-free
microscopic predictions for both infinite and finite nu-
cleon systems. While this approach gives a good de-
scription of nuclear matter, the gross features of finite
nuclei (especially light species) are reproduced less well,
but nonetheless much better than in nonrelativistic theo-
ries [11]. For this reason, results of Dirac-Brueckner nu-

clear matter calculations are used below for examining the
p-helicity transformed two-body nuclear interaction, as
well as the mean field, in heavy nuclei.

For a wide range of nuclear densities, including the
saturation point, the nucleon-nucleon interaction in the
infinite medium is approximated perfectly by a one-boson
exchange potential (OBEP) with the boson parameters
fitted to the Bonn model and the density-dependent
effective nucleon mass M* calculated in a self-consistent
manner [10]. And to a very good approximation, the
density-dependent self-consistent field has the same
Lorentz structure as the free Dirac Hamiltonian. Con-
sequently, a single-particle Hamiltonian in the medium
commutes with the p helicity, and the helicity transfor
mation does not affect the single particle energ-ies

However, the two-body interaction changes dramati-
cally. In the representation of plane-wave Dirac spinors
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for nucleon states, normalized to unity, the p-helicity op-
eration is equivalent to iysS when acting on right (ket)
states. Here y5 is the usual product of Dirac matri-
ces (ys = iyoy'y~y3), and 5 is a formal operation for
switching the sign of the effective mass [Sf(M*, p) =
f( M*—, p)]. (Thus there is no difference between the chi-
ral and the helicity transformations in the M ~ 0 limit. )
Since the y matrices change sign under the y5 gener-
ated chiral transformation, and the OBEP is bilinear in
those matrices, the helicity transformation of the OBEP
is reduced to changing the sign of M* in the momen-
tum representation. This is easily accomplished in the
two-nucleon center-of-mass frame and produces strongly
incident-energy dependent and therefore nonlocal inter-
actions. Because only a rough estimate for the poten-
tials is required for this analysis, here these potentials are
converted into local approximations by averaging over al-
lowed values of the relative momentum q with an appro-
priate distribution of q at a fixed momentum transfer k.
The localized helicity-transformed OBEP in the momen-
tum space is found to converge rapidly in the shortwave
region (k ) 2kF) to the initial potential, averaged with the
same distribution. The values of the localized central part
of the internucleon potential also coincide at k = 0 be-
fore and after the transformation in accordance with the
helicity-invariance of the single-nucleon energy in the in-
finite medium.

The localized estimates for transformed single-particle
potentials in coordinate space, shown in Figs. 1 and 2,
were calculated in first order perturbation theory with re-
spect to 6 V(k), the localized difference between the trans-
formed and initial OBEP. Unperturbed potentials were
taken in the standard Woods-Saxon parametrization [12]

with a slight adjustment for the radial dependence which
allows for a simple analytic Fourier transform along with
a quantitative fit. The estimate was done analytically us-
ing a zero-order nuclear density distribution of the same
parametrization but with a lesser diffuseness [3] and a
Skyrme-type low momentum expansion for BV(k). Be-
cause of the strong nonlocality of transformed OBEP, the
analytic formulas for single-particle potentials are more
complicated than in a conventional scheme with Skyrme
forces [13]. Basic complications and approximations of
this analysis are the following: (a) d and f waves of the
relative motion make an impact that is on the same or-
der of magnitude as the normally included s and p waves;
(b) BG(k), a difference between the localized G matrix
in the transformed space and the physical t matrix, co-
incides with BV(k) in the first order because changes in
the short wavelength region are small (see previous para-
graph); (c) the ratio of proton and neutron densities is
taken equal for all r, and Coulomb corrections are not
considered; (d) M* and kF are fixed at their saturation
point values [10].

Although the single-nucleon potentials shown in the
figures are only rough local estimates for strongly non-
local fields, they display several features that are char-
acteristic of pseudospin symmetry. First, in accordance
with Sec. 3, the transformation preserves the finite depth
of the central potential and increases the surface diffuse-
ness. And because the kinetic energy is conserved by the
transformation, this in turn implies that the transformed
radial wave functions associated with higher energy or-
bitals (which are most important for heavier nuclei) must
be localized at a larger radial distance than for the corre-
sponding conventional functions. Second, a minimum of
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FIG. 1. Localized estimates for the neutron central and spin-
orbit potentials of 208Pb before and after the helicity transfor-
mation (continuous lines and shaded areas, respectively). The
two curves that define the borders of the shaded areas were de-
termined by using different reasonable approximations for the
relative momentum distribution in a finite nucleus.
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FIG. 2. The same as Fig. 1 but in this case for protons.

-70

4151



VOLUME 74, NUMBER 21 PHYSICAL REVIEW LETTERS 22 MAY 1995

the spin-orbit potential, which is located in the surface re-
gion in the normal representation, gets shifted deeper into
the bulk as a result of the helicity transformation. And
from this it follows that the magnitude of the spin-orbit
potential in the region where the wave functions are local-
ized and which is primarily responsible for the interaction
strength, exhibits a dramatic decrease. Also note that the
effective pseudo spin-orbit interaction of the neutrons is
more repulsive than one of the protons —in consonance
with experiment [8].

(5) Conclusions —Th. e microscopic origin of the
pseudospin symmetry is considered. The many-particle
p-helicity operator is found to be the only one that gen-
erates the normal ~ pseudo relabeling of the spin and
orbital momenta while satisfying all other global symme-
try requirements. In addition, it is shown to transform
wave functions in a physically reasonable manner and to
effectively compensate for the single-particle spin-orbit
interaction strength that is observed in the normal (not
pseudo) picture.

The approximate independence of the single-nucleon
spectrum in an infinite medium on the helicity trans-
formation and the consistency of the microscopic es-
timates for the single-particle nuclear potentials with
the Dirac-Brueckner calculations, is used to connect the
pseudospin symmetry to the boson-exchange nature of
nucleon-nucleon interaction. Based on the results of that
analysis and because of the close relation (coincidence in
the chiral symmetry limit) of the helicity and chirality op-
erations, the goodness of pseudospin symmetry may be
expected to increase with rising densities (or energy per
particle) in hadronic systems, and actually yield to chiral
symmetry in the region of asymptotic freedom.
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