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Supersymmetric Minisuperspace with Nonvanishing Fermion Number
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The Lagrangian of N = 1 supergravity is dimensionally reduced to one (timelike) dimension
assuming spatial homogeneity of any Bianchi type within class A of the classification of Ellis and
McCallum. The algebra of the supersymmetry generators, the Lorentz generators, the diffeomorphism
generators, and the Hamiltonian generator is determined and found to close. In contrast to earlier work,
infinitely many physical states with nonvanishing even fermion number are found to exist in these
models, indicating that minisuperspace models in supergravity may be just as useful as in pure gravity.
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Minisuperspace models have long served as an enor-
mously useful testing ground for new ideas in quantum
gravity, ranging from explorations of its mathematical
structure to investigation in the many open problems of
quantum cosmology (see, e.g., Refs. [1-3]). More re-
cently, also the quantum theory of supersymmetric mini-
superspace models has attracted the interest of many
authors (see, e.g., Refs. [4—16]) for similar reasons. Our
own interest was first aroused by the chaotic classical
nature of the Bianchi type IX models and the discov-
ery [7] that supersymmetric versions have simple explicit
analytical solutions in the empty and filled fermion sec-
tors which can be interpreted as wormhole states [9] and,
in other cases, as Hartle-Hawking no-boundary states
[16]. However, it has been shown meanwhile by a sim-
ple scaling argument that these special solutions found
in the minisuperspace models have no direct counter-
part in 4-dimensional supergravity because there states in
the empty and filled sectors cannot exist [17] (for inde-
pendent arguments to the same conclusion see Ref. [18];
for a dissenting opinion see Ref. [19]). This rather re-
cent result makes appear disturbing another result found
some time ago [8] and claimed as confirmed by several
groups of authors [9-12], namely, that the solutions in
the empty and filled fermion sectors are the only so-
lutions (i.e., the only physical states satisfying all con-
straints) for all supersymmetric minisuperspace models
of the Bianchi type in class A [20] (without matter cou-
pling and with the exception, with a certain operator or-
dering [11,12], of Bianchi type I which is, also for other
reasons, very special in this class). An even stronger
result of this type was reported for anisotropic super-
symmetric minisuperspace models with a nonvanishing
cosmological constant [13—15]: The present consensus
in the literature is that no physical states exist, in this
case, at all. Taken together these results force the con-
clusion that the physical states found in the minisuper-
space models have no counterpart in the full theory, and
vice versa, which would render supersymmetric minisu-
perspace models useless as models of full supergravity,
contrary to the situation in pure gravity.
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However, doubts may be raised. The quoted results
for the minisuperspace models are paradoxical from a
general point of view: In comparison to pure gravity, so it
would appear from these findings, these supersymmetric
models are overconstrained for physically not yet well
understood reasons, even though supergravity certainly
has more physical degrees of freedom than gravity, not
less, namely, the two additional physical degrees of
freedom per space point of the Rarita-Schwinger field.

The present work has the purpose to clarify these
issues for the supersymmetric models of the Bianchi
type within class A of the classification of Ellis and
McCallum [20]. Here we shall restrict ourselves to
the case of a vanishing cosmological constant. We
have derived explicitly, in the metric representation,
the dimensionally reduced generators of supersymmetry
transformations, Lorentz transformations, and coordinate
transformations within the homogeneity group; we have
then determined their closed graded algebra explicitly.
The form of this graded algebra allows us to determine
the form of the nontrivial physical states in all sectors
with an even fermion number, which may take the
values 0,2,4,6 in these models. In all of these sectors
nontrivial solutions are found to exist, of which infinitely
many have fermion numbers 2 and 4. The new type of
solution we find to exist in the two- and four-fermion
sectors permits the free choice of the fermion sector,
corresponding to the choice of the initial state of the
Rarita-Schwinger field, and, in addition, just as much
freedom in the choice of initial conditions as the Wheeler-
DeWitt equation of the corresponding Bianchi models
in pure gravity. Moreover, the new physical states are
direct analogs of physical states in full supergravity. As
a consequence, supersymmetric minisuperspace models
recover their significance as models of full supergravity.

We now proceed to present some more detail, however,
omitting technical points as much as possible. These we
shall present in a full report of this work elsewhere. We
shall base our work on the Lagrangian of N = 1 super-
gravity given in Ref. [21] adopting all spinor conventions
given there. The excellent account of the Hamiltonian
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form of N = 1 supergravity in the metric representation
given in Refs. [5,22] is also freely used in the follow-
ing. In the metric representation the independent variables
are taken to be the tetrad components e,* (with Einstein
indices p = 1,2,3 from the middle of the alphabet and
Lorentz indices a = 0,1,2,3 from the beginning of the
alphabet) and the Grassmannian components ¢,* (with
spinor index a = 1,2) of the Rarita-Schwinger field. The
e,” form the metric tensor hp,, = ¢,"e;, on the space-
like homogeneity 3-surfaces in the symmetric basis of 1-
forms w?, satisfying dw? = %(m"q/h'/z)sqmw’ ® w* in
Bianchi type models of class A. Here h = deth,, and
€,rs denotes the components of the Levi-Civita tensor (not
the tensor density). The constant symmetric matrix m”?
is fixed by the chosen Bianchi type [23]. It transforms as
a tensor under all coordinate changes from one symmetric
basis to another one. Because of the choice of a symmet-
ric basis, the e, and ¢, are functions of time only.
Starting from the supergravity Lagrangian in Ref. [21],

a canonical formulation of supergravity, restricted to the
purely time-dependent variables e, ,%, can now be
developed in the same way as in Ref. [22]. From the
Lagrangian one defines, as usual, the generalized momenta
p’a and #7, of e,” and ¢,%, respectively. The Poisson
brackets must be replaced by Dirac brackets due to the
appearance and subsequent elimination of second class
constraints, by which the adjoint quantities ¢, #”, are
eliminated. The Dirac brackets (and their Grassmannian
generalizations [24]) are decoupled by the introduction of
[22,25] p+pa via

P, = 2mP,,

PPy = p+la — %h‘/zewwqaamcéfwsﬁ, (1)
with

Cis =

(thpgn® — qu,e’”)&ad“. )

1
2vhI/2
Here o, are the o matrices in the conventions of
Ref. [21], V is the volume of the compact or compacti-
fied spacelike homogeneity surface V = [w' A ? A w3,
and n? is the future-oriented timelike unit vector orthog-
onal to the spacelike homogeneity surfaces. It must be
kept in mind that »n¢ is a function of the tetrad components

b

e, . The only nonvanishing Dirac brackets now are

{epa’er‘Ib}* = 5pq8ba and {Wpci, l//q'g}* = —6pq65a. The
supersymmetry generators SaSa and Lorentz generators

Jap,J ;5 in this representation are obtained as

1 i pa : r
Sy = —<§Vmpqeqa + §p+ )O'aadC;rBW E

S 1 a i pa ) a
Sa (Evmpqeq - EP+ )Uaaa'//p (3)

I

and
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We have checked that the Dirac bracket H,; =
—2i{S,,S,}* differs only by terms proportional to Jap o1
Jsjp from the expression Hygq = 0aa(e, HP + n?H)
defined by the generators of the Hamiltonian 7 and dif-
feomorphism constraint J{ ” constructed in the canonical
formulation.

Canonical quantization is achieved by the requirements
p+'a = —ih(d/de,") and 7P, = —ifi(3/0y,%). In S,
there is then an ordering ambiguity between p+’a and
C [lzlr‘B, which we have resolved by adopting the ordering as
written in Eq. (3); see also Ref. [22]. Using the quantized
generators we then have computed their algebra. The
result of these calculations, which are quite lengthy, in
particular for establishing Eqgs. (7) and (8), is as follows:

[Sa.Sply =0 =1[84.5;]+. (5
_ h
[Se,Sals = — EHad- (6)

The operator H,, is here defined by the anticommutator
(6) in accordance with the classical Dirac bracket. The
commutation relations of all operators with J,z and J,
need not be written down explicitly, as they simply reflect
the transformation properties of spinors and Lorentz
tensors in the spinor formalism. In particular, S*S, and
S5.S5% are Lorentz scalars and therefore commute with

Jag,jtm.

(Haa,Spl- = itie,3D P T g, @)
[Hoi,Sp). = —iheaslyyDs’"
—l'hSaB[DévBi,jB‘y + iﬁEdya.]ya
— iB(1/VE e 55,P7S,]. (8)

The commutators [Sz, Heql  and [Sp,Hasl- are the
essential new results, on which all of the following is
based. It should be noted, in particular, that only Lorentz
generators appear on the right-hand side of Eq. (7).

The operators D7, D;*?, E;®” are odd and functions
of ¢, %, 7P, e, p+pa, whose explicit form we have
determined but will not be important here. The results
(5)—(8) demonstrate that the algebra of the generator
closes, a fact which was always assumed in the earlier
work on the same minisuperspace models, but which is
here established explicitly by Egs. (7) and (8).

Let us now find the physical states of these models,
given by all the states which are annihilated by the gen-
erators Sa,S'd,JaB,HM. The Lorentz generators auto-
matically annihilate all states which are Lorentz scalars.
Therefore, it is sufficient to demand that physical states
are Lorentz scalars and annihilated by S, and §,; their
annihilation by H,, is then automatically guaranteed due
to Eq. (6). The form of the constraint operators guar-
antees that physical states have a fixed fermion number
F = ,%3/dyy, given by the number of factors of ¢,*
in the ¢ representation: F must be an even number in



VOLUME 74, NUMBER 21

PHYSICAL REVIEW LETTERS

22 MAY 1995

Lorentz-invariant states and ranges from O to 6 in the
present models.

The physical states in the sectors F = 0 and F = 6 are
easily obtained, and are, respectively, given by

W, = const X eV/2Wm

We = const X he (V/2RIm hy, l_[(lﬂr)2 ®

reproducing a well-known result [7-12].
In order to show that there exist physical states in the
2-fermion sector let us consider the wave function

Wy = 558%f(hpy) (10)

where we require, of course, that S5 5% f # 0. Here fisa
function of A, only, and therefore, like $,5¢, a Lorentz
scalar. Therefore WV, automatically satisfies the Lorentz
constraints and the S constraints because of Eq. (5). The
only remaining condition is S,¥, = 0, which, after the
use of Egs. (10) and (6), reduces to

[Hoa, 51 f + 28%Hqaaf = 0. (11
The first term is proportional to Jg, thanks to Eq. (7) and
therefore vanishes because f is a Lorentz scalar. The

second term vanishes if f satisfies the Wheeler-DeWitt
equation [26]

Had“))f(hpq) =0, (12)

where Had(o) consists only of the bosonic terms of H,4,
i.e., of the terms which remain if 7”7, is brought to the
right and then equated to zero. Any solution of this
Wheeler-DeWitt equation, which may be specified fur-
ther, e.g., by imposing Hartle-Hawking [2] no-boundary
conditions, or Vilenkin [2] tunneling boundary condi-
tions, or wormhole boundary conditions [27], or some
choice of scalar product [3], generates a solution in the
2-fermion sector via Eq. (10), with a definite dependence
on the fermionic variables, which are only present in the
S4S% term.

Let us observe now that the norm of ¥, vanishes due
to the appearance of S, in Eq. (10) and the fact that S,
is the adjoint of S;. However, a proper definition of the
scalar product, which we shall not attempt here, must also
include some gauge-fixing condition in its measure. The
norm of ¥, (and of ¥, to be considered below) in such a
properly defined scalar product will then not vanish.

Let us now turn to physical states in the 4-fermion
sector. Similar to Eq. (10) the wave function

3
Wy = SSag(hpy) [ [w,)? (13)
r=1

automatically satisfies the Lorentz constraints and the S
constraint. It remains to satisfy the S; constraint, which
reduces to

3
(Hae,S?1- + 28°Ho)ghp) [ )2 = 0. (14)
r=1

Let us consider the first term in the bracket: By the
use of Eq. (8) it is expanded in terms containing the

Lorentz generators or S, as factors on the right. The
terms containing the Lorentz generators vanish as they
act on Lorentz scalars. In the term containing §,, the
generator S, can be brought to the left because it happens
to commute with its prefactor. Combining this term with
the second term in the bracket of Eq. (14), S* can be
factored out to the left. To fulfill Eq. (14) it is therefore
enough [26] if g satisfies the Wheeler-DeWitt equation:

(Haiv“) - -

Vh!/2
where H, d(l) consists of those terms of H,, which remain
if the 7" are brought to the left and then equated to
zero. The resulting Wheeler-DeWitt equation is slightly
different from that obeyed by the amplitude in the 2-
fermion sector, but apart from this the degree of generality
of the solution is the same.

Our results differ from earlier work on the supersym-
metric Bianchi models in class A [8-12] which concluded
that physical states in the 2- and 4-fermion sectors do not
exist. In hindsight, this conclusion can be traced to an
overly restricted ansatz for Lorentz-invariant wave func-
tions [28]: Lorentz invariants were constructed only from
the irreducible spin-1/2 and spin-3/2 components con-
tained in the Rarita-Schwinger field ¢, (there are only
two such invariants bilinear and two more quadrilinear in
¥,*), omitting the further invariants which can be formed
with the help of the irreducible spin-2 components con-
tained in the gravitational degrees of freedom. In fact,
such components can be used to generate up to () = 15
Lorentz invariants in the 2-fermion sector. A simple
example of such an additional invariant is mP9y, %Y,
another one is m?” h,;m*? b, Pya, eLC. Writing out the ex-
pressions (10) and (12) for ¥, and W, in an explicit way
it can be seen that indeed they contain such additional
invariants.

We finish by speculating on a possible generalization
of these solutions for the case of full supergravity. In
that case the S, constraint contains a covariant spatial
derivative of %, and physical states with a finite fermion
number no longer exist [17]. However, provided the
algebra of the local generators of the constraints still
has a form like Egs. (6)—(8), physical states still exist
which look somewhat like ¥, and W4, but contain
formal products of (§)? or (S)?> over all points of the
spacelike 3-surface, thus leading to states with an infinite
fermion number. Such states, corresponding to the filled
Dirac sea of gravitinos, have recently been discussed in
Ref. [17]. The new physical states we have found in
the present Letter are the direct minisuperspace analogs
of such states in full supergravity, even though, due to
the reduction to minisuperspace the fermion number is,
of course, finite (in fact, just 2 or 4). Contrary to what
one might have expected, and what seemed to be implied
by the earlier work in the field, not the zero (or filled)
fermion state, which in the full theory would be the Fock

naam)g(h,,q> —0, (5
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vacuum of the gravitino or antigravitino, corresponds
to ordinary gravity but the states containing the (5)?
or (8)? factors, corresponding to the filled gravitino (or
antigravitino) Dirac sea, which is the physical gravitino
(or antigravitino) vacuum. The new states display the
same richness of gravitational dynamical behavior as the
Bianchi models in pure gravity. (Recently we found a
Hartle-Hawking no-boundary state in the 4-fermion sector
[29].) In this respect they differ qualitatively from the
earlier found states in the empty and full fermion sectors,
which are highly symmetric and do not describe the full
dynamical behavior of the Bianchi models in the classical
limit, which, as is well known, can be very asymmetric
and rich.

While the states in the empty and filled sectors alone
would span at most a two-dimensional Hilbert space,
the new physical states described here span an infinite-
dimensional Hilbert space just as in the Bianchi models of
pure gravity [3]. Just how this Hilbert space ought to be
constructed is, of course, one of the questions one hopes
to unravel by the further study of minisuperspace models.
That this strategy is not only fruitful in the case of pure
gravity but can also be usefully employed in the case of
supergravity is an encouraging conclusion of the present
Letter.
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