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Density of Levels in a Generalized Matrix Ensemble
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We present analytical results for the average density of levels p(A) in an ensemble of random
matrices, which is a generalization of the standard Gaussian unitary ensemble. The generalized
ensemble contains a parameter p, (N) which is allowed to scale, in an arbitrary way, with the matrix
size N Th.e results crucially depend on the behavior of p(N) .For .a sublinear dependence of p, on
N a modified Wigner semicircle is obtained, in the large N limit. For a superlinear dependence the
ensemble approaches the Poissonian limit of uncorrelated levels, with a Gaussian shape for p(A). For a
strictly linear dependence, i.e. , when limz (p, /N) = const, an intermediate situation occurs.

PACS numbers: 05.40.+j, 05.45.+b

d H = dH;; d(ReH;, )d(ImH;, ) .

[An N X N Hermitian matrix can be parametrized by
]

its N (real) diagonal elements and 2N(N —1) (complex)
elements above the main diagonal. J Denoting the eigen-
values of a matrix H by A; (i = 1, . . . , N), one defines the
average density of levels as po(A) = (P, B(A —A;))o. In
the large N limit, this function is given by the famous
Wigner semicircle [1]:

1
p, (W) = —$2N —X'. (2)

Recently there has been some interest in more gen-
eral matrix ensembles, such as banded matrices [2,3J,
sparse matrices [4,5], and others [6—12]. Such gener-
alized ensembles can interpolate between the GUE with
its characteristic Wigner-Dyson statistics and a Poissonian
ensemble which describes uncorrelated levels. A transi-
tion between the two statistics (i.e., Wigner-Dyson and
Poisson) often occurs in disordered [13—15] and chaotic
[16] systems.

The crossover between Wigner-Dyson and Poisson sta-
tistics resembles weakening of the repulsive correlation in
a Fermi gas under increase of temperature. This analogy
becomes precise for the generalized ensemble introduced
and studied by Moshe, Neuberger, and Shapiro [11]. An-
other interesting analogy is suggested by the recent work
on statistics of "quons" (see Ref. [17], and references
cited therein). These are particles which obey the commu-

Random matrix theory [1] operates with ensembles of
matrices which obey certain symmetries and constraints
but otherwise are "as random as possible. " For instance,
the Gaussian unitary ensemble (GUE) is defined as an en-
semble of Hermitian matrices H with the single constraint
(TrH )o = const, where ( . .)o denotes averaging over the
ensemble. The corresponding probability distribution, in
the matrix space, is

P (H)d&'H

where the volume element can be written explicitly as

tation relations aj, ai —qal, ai = 6ql. When the parame-
ter q increases, starting from q = —1 (fermions), the re-
pulsive correlations in the particle density diminish, sim-
ilar to the decrease of the level repulsion in generalized
ensembles. Thus, generalized ensembles of random ma-
trices appear in various fields of physics, including two-
dimensional quantum gravity [18] and topological field
theory [19].

An important feature of the GUE (and other standard
Gaussian ensembles) is its invariance under unitary trans-
formation, i.e., under change of basis. On the other hand,
in realistic models of complex quantum systems this U
invariance is broken. For instance, the Anderson model
[20] of a disordered electronic system is naturally defined
in the (real space) site representation, and the same is true
for many other models in solid state physics. The exis-
tence of preferential basis in physical systems leads to de-
viations from predictions of the standard random matrix
theory and, thus, motivates studies of matrix ensembles
with broken unitary or orthogonal invariance. One pos-
sible way to break this invariance is to introduce the fol-
lowing generalized ensemble:

N

P((H;, ))d H = const X exp —gH, ,
—2(1 + p, )

X g (ReH;, ) + (ImH;, ) d H . (3)
i~j

The parameter p, imposes a preferential basis, namely, the
basis which is used in Eq. (3). More weight is given to
matrices which are nearly diagonal in that basis. When
the parameter p, changes from 0 to oo, for a fixed value
of N, the ensemble changes from GUE [Eq. (1)] to the
Poissonian ensemble of diagonal matrices. The ensemble
defined in Eq. (3) (more precisely, its orthogonal counter-
part) was studied numerically by Rosenzweig and Porter
[21]. The two-point level correlation function near the
Poissonian limit was computed by Leyvraz and Seligman
[22]. More recently, Pichard and Shapiro [10] gave a
qualitative picture of the level statistics evolution under
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change of p, , and used this ensemble as a paradigm for a
maximal entropy ensemble with a preferential basis.

In this Letter we initiate an analytical study of this gen-
eralized ensemble, in the N ~ limit. Such a study may
prove useful for explaining deviations from the Wigner-
Dyson statistics, or from the Porter-Thomas statistics for
eigenvectors [1], in disordered or chaotic quantum sys-
tems. The results presented below are limited to the av-
erage level density p(A). It is clear that a radical change
from the GUE behavior, in the large N limit, can be ob-
tained only if the parameter p, increases with N sufficiently
fast. Indeed, the N diagonal elements can compete with
the (roughly) N2 off-diagonal ones only if the magnitude
of the off-diagonal elements is suppressed as some power
of N. It turns out that, similar to some other matrix en-
sembles [10,11], there are three distinct regimes.

(1) The dependence of p, on N is slower than linear,
i.e., the parameter C)v —= p, /N approaches zero when N ~

In this case the limiting shape of the average density
of levels p(A) is

1 + p,
p(A) = 2 —A, (4)1+ p,

which is a modified Wigner semicircle. We emphasize
that p, in Eq. (3) can depend on N. For instance, if
p, = N (with 0 ( n ( 1), Eq. (3) simplifies to p(A) =
~-'N v'2N'-. —W'

(2) p, increase with N faster than linearly, i.e. , Cz ~ ~.
In this case one ends up with an ensemble of diagonal
matrices, with normally distributed elements, so that

p(A)= e '. (5)

(3) tu, grows linearly with N, i e. , C)v ~ Cp = const.
The situation resembles the critical point of the Anderson
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FIG. 1. The average density of levels (normalized to one
level), for Co = 1. Only the positive values of A are shown
in the figure. The value of p(A) for negative values of A is
determined by the condition p( —A) = p(A).

transition, where in the thermodynamic limit a new
universal statistics sets in [23,24]. In this case p(A) =
NF(A), where the function F(A) contains Cp but does
not depend on ¹ For an arbitrary Co it does not seem
possible to obtain a closed analytical expression for F(A).
When Cp is large, F(A) is close to the Gaussian of Eq. (5).
When Cp is small F(A) is close to 7r '$2Cp —(ACp)
(as long as A (( Cp ) but develops Gaussian tails for
large ~A~. For Cp = 1 this function can be computed
numerically: Fig. 1 depicts F(A) for Cp = l.

After having presented our main results, in the rest of
the paper we outline their derivation. It is based on a
generalization of the "fermionic method, " presented for
the GUE in Ref. [25]. The resolvent of a Hermitian
matrix H is written as

( — d@ dP* dy dg* l
1~~~N 7T

N

0 0, exp i g [0 (z —H)-4. + y.*(z —H) .g.j,
m, n=1

(6)
where @ and g (lc = 1, . . . , N) denote a set of complex and Grassmann variables, respectively. After averaging G,,
over the distribution P(H) of Eq. (3), which amounts to performing simple Gaussian integrals, and then integrating out
the Grassmann variables, we obtain

1+ p,
+"

(, + )
2 ( — dp, dp,*l

7T oo
1( (N 77

X zt;p;(detM)ezp g(izp„'t). ——t(:zt)„)—
n=l

(G„(.)) =—

1

4(1+ ) n, m

where the matrix M is given by
1 1

M~ = n —iz+ —,*;6~+; *1 —6;,2 ' ' " 21+ p,

(7)

For p, = 0, the determinant of M was calculated in Ref. [25]. Fortunately, it can be calculated for any p„with the
following result:

N

detM = tz —iz + P;e), )
p

21+ p,

—1

~() + tz) , ' ' ~(t + tz)
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(TrG(z)) = i — N
1+ p, dn dye &'+&"'+&'

—N —2

X (n —iz)f + f'
2i(1 + p, )

The next stage of the calculation involves doing inte-
grals over the complex field. The details of this rather
cumbersome calculation will be presented in a separate
publication. Here we only give the final result for (TrG)
which is all one needs for computing the average density
of levels:

sublinear, superlinear, or strictly linear dependence of p,
on N. It is interesting to note that the behavior of p(A)
is rather similar to that obtained in Ref. [11] for a quite
different matrix ensemble. This similarity suggests that
different one-parameter ensembles, interpolating between
the Wigner-Dyson and the Poisson statistics, may exhibit
a large degree of universality.

We acknowledge useful discussions with R. Pnini and
D. Schmeltzer. The research was supported by the fund
for the promotion of research at the Technion and the
Venezuela Technion Society Research Fund.

X . (n —iz)f + f'
2i(1 + p, )

N —1+, f' i(n —iz)f'—
2i(1 + p, )

i(n —iz)f' —2f"

where f denotes the function

1 + p, 1 + p,
f(u) = vr exp — u

taken at the value u = z —y of its argument. Corre-
spondingly, f' and f" denote the first and second deriva-
tives of f at that value of its argument.

The average density of levels, p(A) = 7r ' X—
Im(TrG(z = A + i0)), and the last step of the calculation
requires doing the double integral in Eq. (10). For
large N this is done by the method of steepest descent.
Although the saddle point values n„y, cannot be found
analytically in the general case, a rather complete analyti-
cal treatment is possible. This is due to the property

f' = 2 (i —uf)
1 + p (12)

p

which follows directly from the expression (11) for the
function f. This property ensures the relation n, = iy,
and highly facilitates the subsequent treatment. The
saddle point equations contain the parameter Cz —= p, /N.
If C~ decreases with N, there is a pair of saddle points,
as in the GUE case. The only difference from the GUE
is the appearance of the factor 1 + p, , which results
in Eq. (4) for p(A). In the opposite limit, i.e., when

Cz ~ ~ with N, there is only one saddle point and p(A)
is given by Eq. (5). For the intermediate case (Ctv Co)
the saddle point equations cannot be solved analytically,
for an arbitrary value of Co. An approximate analytical
treatment is possible for large or small Co, with the results
stated above. In Co = 1 one has to resort to numerical
computations (Fig. 1).

In conclusion, we have calculated the average density
of levels p(A) for the ensemble defined in Eq. (3), in
the large N limit. The functional form of p(A) crucially
depends on how fast the parameter p, increases with
N. There are three distinct regimes, corresponding to
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