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Inhibition of the Measurement of the Wave Function of a Single Quantum System in Repeated
Weak Quantum Nondemolition Measurements
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It is shown that a series of repeated weak quantum nondemolition measurements performed on a
single quantum system gives no information about the wave function of the system. The physical
explanation, based on the quantum Brownian motion and the continuous collapse of the wave function
which originate in the projection postulate, is discussed in two specific examples.

PACS numbers: 03.65.Bz, 42.50.—p

Two separate structures exist in quantum mechanics:
the observables, which are represented by operators of the
Hilbert space, and the physical systems, which are de-
scribed by state vectors or wave functions. The wave
function is said to have an epistemological meaning, be-
cause it contains all the relevant information about the
physical system. The result of a precise measurement
on a single quantum system is always one of the eigen-
values of the measured observable. After the measure-
ment, the wave function of the measured system col-
lapses to the corresponding eigenstate, according to the
projection postulate. There is no one-to-one correspon-
dence between the result of a single measurement and
the state of the system before the measurement. In order
to measure the initial wave function of the system, one
needs to prepare an ensemble of systems with the same
wave function and measure them all ~ The wave function
is obtained from the statistics of the results of measure-
ments performed on this ensemble. Recently Aharonov,
Anandan, and Vaidman [1,2] suggested that the wave
function of a single quantum system could be measured,
therefore giving the wave function an ontological signif-
icance, i.e., physical reality in its own right. They sug-
gested employing a series of "protective measurements, "
where an a priori knowledge of the wave function en-
ables one to measure this wave function and protect it
from changing at the same time. However, with this
a priori knowledge, one could reproduce the wave func-
tion after each measurement for an arbitrarily large nurn-

ber of times, and measure the wave function in the con-
ventional manner. Another recent suggestion, made by
Royer [3], is to measure the spin wave function of a
single spin-z particle using "physically reversible rnea-
surements. " In this process each measurement would be
counteracted by another measurement to restore the initial
state of the particle, where no a priori knowledge of this
state is needed. Only the results of measurements which
are performed on the particle in its initial state would be
taken into account. Huttner [4] showed, however, that the
statistics of these results are independent of the initial spin
wave function, and therefore no information could be ob-
tained from a series of physically reversed measurements.

In this Letter, we investigate the possibility of measur-
ing the wave function of a single quantum system with
no a priori knowledge of the wave function, in order to
explore a real ontological meaning of the wave function.
We study the case of repeated weak quantum nondemo-
lition (QND) measurements [5,6], for which we can as-
sume that the signal and the probe are in pure states be-
fore the measurement, without loss of generality. In this
case, the signal is left in a pure state after the measure-
ment. The QND observable evades backaction noise in
the measurement process and remains unchanged during
the time evolution of the signal. In addition, the QND
measurement can be chosen to be as weak as we want. It
is possible, therefore, to measure the signal many times,
using weak QND measurements, before the wave function
of the signal is changed significantly. The measurement
results are all generated under some influence of the ini-
tial wave function, and one may expect the statistics of
these results to give at least partial information about this
wave function. By "information about the wave function"
we mean information about both the average and the vari-
ance of the measured observable, i.e., the center and the
width of the wave function, with finite probability errors.
Information about the center alone corresponds to a mea-
surement of the observable, where information about the
width reveals the wave function. In this work, we show
that this intuitive picture fails, and one cannot extract any
information about the initial wave function of the signal
at all using repeated weak QND measurements.

First, we describe the general formulation of this prob-
lern. We show that the inhibition of the measurement of
the wave function originates in the projection postulate.
To illustrate this result, we discuss two specific examples,
both using QND measurements which have been demon-
strated experimentally. The first example [7] is that of
repeated photon number QND measurements [8—11] per-
formed on a squeezed state of light, i.e., a generalized
minimum uncertainty wave packet. Note that the photon
number QND measurement is analogous to the QND mea-
surement of the momentum of a free particle [12]. The
second example is that of alternating QND measurements
of the two (slowly varying) quadrature amplitudes [13,14]
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QND measurements is equivalent to a measurement of
the observables q and p, and cannot be considered as a
measurement of the wave function. The same is true for
all processes of repeated Pauli's first-kind measurements
of the arbitrary observable q cosO + p sin0.

The mathematical origin of this result is the dependence
of each measurement on the specific results of the
previous measurements. Physically, the measurement
process modifies the wave function in accordance with
the measurement result, i.e., the information which is
extracted from the wave function. -This modification is
a direct result of the projection postulate. Therefore,
regardless of the measurement strength, it is impossible
to measure the wave function of a single system using
repeated QND measurements.

We now illustrate these general considerations with
two examples. The first example [7] is that of a se-
ries of photon-number QND measurements [8—11] per-
formed on a single wave packet of light. Each time a
measurement is performed, a probe, which is prepared in
a squeezed state with a zero phase, ~np, r)~, where ~ap~ is
the initial excitation of the probe, and r is the squeez-
ing parameter, is correlated to the signal in an optical
Kerr medium. The correlation is described by the uni-
tary operator U = exp(ip, n, n„), where n, and n„are the
signal and probe photon number operators, respectively,
and p, is the coupling strength [16]. Then, the second-
quadrature amplitude of the probe, a2„—= ~np~p~, where

p~ is the phase operator of the probe, is measured pre-
cisely by a homodyne detection. The measurement re-
sult, cx2, gives the inferred signal photon number, n =—

et'2/~ ap ~ p, . The probability-amplitude operator Y (n, n)
„(n~U~ap, r)„corre p sdosnto a Gaussian [17] transition
probability, X(n, n) = N[n, n, 5 ]. The measurement er-
ror is 5 = (ha2„)/(.np( p~, where (Aaq„) = e '/4 is
the initial uncertainty of the second quadrature of the
probe. The process of k repeated measurements is de-
scribed by the total probability-amplitude operator, Zq =
Y (n, nj, ) Y (n, nq) Y (n, n~). Let us assume that the ini-
tial photon number distribution of the signal is a Gauss-
ian, Pp(n) = N[n, np, Ap]. Physically, the photon number
has a discrete sub- or super-Poissonian distribution, where
n ~ 0. If the initial signal excitation is large, i.e., no && 1,
this Gaussian approximation is valid. The final signal
photon number distribution, Pq(n) = N[n, np, 5„],is then
calculated according to Eq. (5),

k

np = ~1, np/~o + g n;/6' (12)

(13)

After each measurement the width of the photon number
distribution decreases and its center shifts. The diffusion
of the center after k measurements, no, is described statis-
tically by Pq(np) = N[np, np, (k/6 )5p g]. On average,
the center is always at no. However, the probability of
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finding the center farther away from no increases as the
number of measurements increases. As 1ong as the total
strength of the measurements is small, k/A2 (( 1/hp, the
variance of no increases linearly with the number of mea-
surements (k/b )Apg —= Dk In. this regime the move-
ment of the center is a quantum Brownian motion with a
constant diffusion coefficient D = g/A~. As the pho-
ton number distribution narrows, the average step size of
this Brownian motion decreases. The statistical variance
of the center saturates, and equals the initial photon num-
ber uncertainty, 50. At the same time, the wave function
is reduced to a photon number eigenstate. The measured
wave function, therefore, undergoes a quantum Brownian
motion, which is saturated due to the continuous wave
function collapse.

Using Eq. (1), the probability to obtain the measure-
ment results (ni, n2, . . . , nq) is

P(n), n2, . . . , ni, ) dn N[n, np, 5p]

X N[n;, n, h ] = [P(n) dn][P(S) dS) deal, ~, (14)

where n = P, , n;/k and An2 = P, , (n; —n) /(k —1)
are the estimates for the center and the width of the
initial photon number distribution, respectively [7], S =
[(k —I)/b, ]An~, and dpi, i is a normalized infinites-
imal element of the solid angle in k —1 dimensions,
f dAq i = 1. The probability distribution of n, P(n) =
N[n, np, Ap + 5 /k], is centered at np. The variance
of n decreases with an increased number of measure-
ments, and as k ~ this variance reaches its minimum
value, Ao. The estimated center has the same probabil-
ity error in both cases of an infinite number of repeated
weak measurements and one precise measurement. The
probability distribution of 5 is a chi-squared distribution
[18], P(S) = g [S, (k —1)], which is independent of 5„.
Therefore, An~ is not a measure of the initial width of the
wave function, 50. Indeed, An is centered at 5, with
the variance 254/(k —1), i.e. , An~ is a measure of the
measurement error. We conclude that the statistics of the
results of repeated weak QND measurements of the same
observable, performed on a single system, contain no in-
formation about the initial width of its wave funciton, due
to the exact coordination between the quantum Brownian
motion and the continuous collapse of the wave function.

The second example shows that even when the collapse
of the wave function to an eigenstate of the measured ob-
servable is prevented due to backaction noise imposed by
measurements of the conjugate observable, it is still im-
possible to measure this wave function. This is the case of
alternating QND measurements of the two quadrature am-
plitudes of a squeezed state, using a dual degenerate para-
metric amplification [13,14]. In the odd measurements,
the result of a measurement of the second quadrature of
the probe, a2 ~, is used to infer the first quadrature of the
signal, a~, . Both the probe, which is in the vacuum state,
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and the signal have Gaussian distributions, and the previous model, of repeated photon number QND measurements, can
be modified, to describe the distribution of a~, before the kth measurement, Pt. ~(a) = N[tx, np, b, & ~]. Taking into
account the backaction noise due to the (k —1)th measurement of the second quadrature of the signal, a2 „we obtain
from Eqs. (12) and (13)

ap (I/~t. —2 + I/~~) (~p /~g —2 + ~k —I /~~) i

= (I/6' + I/6') ' + 6'
where nk t is the result of the (k —1)th measurement of a), . Pt, )(n) determines the conditional probability to obtain
nz in the kth measurement, P(uk ~ aI, t, . . . , nt), according to Eqs. (1)—(4). This allows us to calculate the second-order
moment,

(~k) = dn& P(nt) dtx2 P(~r2 I at) dnk P(ni i n, i, . . . , oti)n„= np + b, p + 5 + (k —I)b„, (17)

and the correlation, for all j ~ k + 1,

&~t, ~, ) = dni P(nt) dtxk P(txk I txu —t . , trt)txk detj P(n, i txj i, . . . , ni)tx, = np + bp + (k —1)bb,

(18)

where Pp(tx) = N[ot, np, Ap] is the initial distribution of
at, . From Eqs. (17) and (18) we see that the information
about 50 is always "screened" by no, and therefore is
impossible to obtain. The same treatment can be repeated
using the measurement results of a2, . The wave function
is prevented from collapsing to an eigenstate of at, (or
a2, ), but the narrowing and widening of the wave function
due to the alternating measurements of a~, and a2,
would, eventually, balance, to keep the width of the wave
function the same each time at, (or aq, ) is measured, i.e.,

In this limit, the wave function undergoes a
process of free diffusion, preserving its noise distribution.
This final noise distribution of the wave function is
determined solely by the relative strengths of the a&,
and a2, measurements. If these measurements have
equal strengths, for instance, the noise distribution of
the wave function would be that of a coherent state.
As in the previous example, the coordination between
the shifts of the center and the changes in the width,
which are caused to the wave function by the repeated
measurements, inhibit the measurement of this wave
function.

To conclude, we have shown that the wave function
of a single quantum system cannot be measured by a
series of weak QND measurements without an a pri
ori knowledge of the wave function. During the mea-
surement process, the wave function undergoes quantum
Brownian motion and continuous collapse. Due to this
physical mechanism, which originates in the projection
postulate, the statistics of the measurement results con-
tain no information about the initial width of the wave
function.
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