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Quantum Computations with Cold Trapped Ions
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A quantum computer can be implemented with cold ions confined in a linear trap and interacting with
laser beams. Quantum gates involving any pair, triplet, or subset of ions can be realized by coupling
the ions through the collective quantized motion. In this system decoherence is negligible, and the
measurement (readout of the quantum register) can be carried out with a high efficiency.

PACS numbers: 89.80.+h, 03.65.Bz, I 2.20.Fv, 32.80.Pj

A quantum computer (QC) obeys the laws of quantum
mechanics, and its unique feature is that it can follow a su-
perposition of computation paths simultaneously and pro-
duce a final state depending on the interference of these
paths [1]. Recent results in quantum complexity theory
and the development of algorithms indicate that quantum
computers can solve some problems efficiently which are
considered intractable on classical Turing machines. An
example is the factorization of large composite numbers
into primes [2], a problem which is the basis of the secu-
rity of many classical key cryptosystems.

The task of designing a QC is equivalent to finding a
physical implementation of quantum gates between quan-
tum bits (or qubits), where a qubit refers to a two-state
system (~0), ~1)) [3]. It has been shown [4] that any op-
eration can be decomposed into controlled-NOT gates be-
tween two qubits and rotations on a single qubit, where
a controlled-NOT is defined by C~2 . ~et)~e2) ~e))(e) e
e2) with e& 2

= 0, 1, and e denoting addition modulo 2.
While there exist promising proposals to demonstrate the
basic principle of gates in cavity QED [4], the experimen-
tal steps necessary to realize even a controlled-NOT gate
indicate that extended networks would be exceedingly dif-
ficult to build. On the other hand, a number of interactions
have been proposed for the construction of quantum com-
puters [1,5], but so far no explicit physical system has been
shown to serve as a realistic model. The main obstacle for
a practical realization is the existence of decoherence pro-
cesses due to the interaction of the system (the QC) with
the environment [6].

In this Letter we show that a set of N cold ions
interacting with laser light and moving in a linear trap
[7] provides a realistic physical system to implement a
quantum computer. The distinctive features of this system
are (i) it allows the implementation of n-bit quantum gates
between any set of (not necessarily neighboring) ions,
(ii) decoherence can be made negligible during the whole
computation, and (iii) the final readout can be performed
with unit efficiency.

The basic elements of the computer (i.e., the qubits)
are the ions themselves. The two states of the nth
qubit are identified with two of the internal states of the
corresponding ion; for example, a ground state ~g), —= ~0)„

and an excited state ~e)„—= ~1)„. The state of the QC is a
macroscopic superposition

2 —].

of quantum registers ~x) = ~xz t)z t
. ~xp)p with x =

p x„2" the binary decomposition of x. In this system
independent manipulation of each individual qubit is
accomplished by directing different laser beams to each
of the ions. The quantum controlled-NOT, and, more
generally, the (controlled)"-NOT gate between n arbitrary
ions in the trap can be implemented by exciting the
collective quantized motion of the ions with lasers [8].
The coupling of the motion of the ions is provided
by the Coulomb repulsion which is much stronger than
any other interaction for typical separations between
the ions of a few optical wavelengths. Decoherence
in an ion trap is due to spontaneous decay of the
internal atomic states and damping of the motion of the
ion. Application of stored ions in ultrahigh precision
spectroscopy and time and frequency standards [9,10]
shows that this decoherence time can be extremely
long, much longer than the time required to perform
many operations in a QC. Spontaneous emission is
suppressed using metastable transitions [10]. Collisions
with background atoms can be avoided at sufficiently low
pressures for very long times, and other couplings that
affect the moving charges can be made sufficiently small
[9]. Furthermore, the final readout of the quantum register
(state measurement of the individual qubits) at the end of
the computation can be accomplished using the quantum
jumps technique with unit efficiency [11].

The situation we have in mind is depicted in Fig. 1.
N ions are confined in a linear trap, and interact with
different laser beams [Fig. 1(a)] in standing wave con-
figurations [12]. The confinement of the motion along
X, I', and Z directions can be described by an (anisotropic)
harmonic potential of frequencies p « py vz Nonhar-
monic traps can also be used leading to very similar re-
sults. The ions have been previously laser cooled in all
three dimensions so that they undergo very small oscil-
lations around the equilibrium position. In this case, the
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the equilibrium position of the ion coincides with the
node of the laser standing wave [12]. The Hamiltonian
describing this situation in an interaction picture defined
by the operator exp( —iHot) is (h = 1)

H„~ = —[le&&„(glae '~ + lg&, (ella e'~]. (1)
N

FIG. 1. (a) N ions in a linear trap interacting with N different
laser beams; (b) atomic level scheme.

motion of the ions is described in terms of normal modes.
Furthermore, we will assume that sideband cooling has
left all the normal modes in their corresponding (quan-
tum) ground states [13]. For this to be possible, one
has to assume that the Lamb-Dicke limit (LDL) holds
for all the modes [10]. This implies that their frequency
is larger than the photon recoil frequency corresponding
to the transition used for laser cooling. For example,
for the S]/q D~y2 dipole-forbidden transition of a bar-
ium ion, this requires v ~, && 3 kHz; in typical situations
t Y, » v, —2' X 50 kHz [7]. The minimum frequency
is that of the center-of-mass (CM) mode moving in the X
direction, and coincides with v . The next frequency is
~3v„and all the others are larger. A remarkable feature
of this system is that the frequency spacing is independent
of the number of ions N in the trap.

Figure l(b) shows a typical level scheme for an alkaline
earth ion, corresponding to an electric dipole-forbidden
transition [10]. The two-level system that we choose as
the qubit is marked with thicker lines (lg) and leo&). The
other levels do not disturb the computation process. On
the contrary, some of them are needed for implementing
quantum gates, as we will show below.

When a laser beam acts on one of the ions, it induces
transitions between its (internal) ground and excited levels
and can change the state of the collective normal modes.
However, in the LDL and for sufficiently low intensities,
the laser beam will only cause transitions that modify
the state of one of the modes. For example, with a
laser frequency so that the detuning equals minus the
CM mode frequency (6„= —v, ), one excites the CM
mode exclusively. This is so since the frequencies of
the different normal modes are well separated in the
excitation spectrum. This fact allows one to control the
interactions between the ions through the CM motion, by
selecting appropriately the frequency of the lasers.

Let Ho be the Hamiltonian for the system in the absence
of any laser field. Now, consider that the laser acting
on the nth ion is turned on. Obviously, this laser will
leave the internal state of all the other ions unaffected.
The laser frequency is chosen such that 6„= —v and

Here at and a are the creation and annihilation operators
of CM phonons, respectively, 0 is the Rabi frequency, P
is the laser phase, and g = [hkq/(2Mv )]'t2 is the LDL
parameter [ko = kcos(0), with k the laser wave vector
and 0 the angle between the X axis and the direction of
propagation of the laser]. The subscript q = 0, 1 refers
to the transition excited by the laser, which depends
on the laser polarization [see Fig. 1(b)]. Equation (1)
can be derived as a generalization of the single ion
Hamiltonian for the case of a linear trap [14]. Physically,
the factor ~N appears since the effective mass of the CM
motion is NM, and the amplitude of the mode scales like
I/QNM (Mossbauer effect). A careful analysis shows
that the model Hamiltonian (1) is valid for (II/2t, )~ q~ ((
1. Note that in the LDL g « 1. On the other hand,
corrections to this Hamiltonian can be made arbitrarily
small for sufficiently low laser intensities.

If the laser beam is on for a certain time
t = k~/(A ri/~N) (i.e., using a k7r pulse), the evo-
lution of the system will be described by the unitary
operator

U„"'~(P) = exp ik (le&—&„(glae '~ + H.c.) . (2)

It is easy to prove that this transformation keeps the state
lg)„l0) unaltered, whereas

: cos(k~/2)lg& 11& ie'~ sin(kyar/2)le & Io&,

: cos(k~/2)le~&„l0& —ie ' sin(k~/2)lg&. ll&,

where l0) (ll&) denotes a state of the CM mode with no
(one) phonon.

Let us now show how a two-bit gate can be performed
using this interaction. We consider the following three-
step process [see Fig. 1(b)]. (i) A vr laser pulse with
polarization q = 0 and P = 0 excites the mth ion. The
evolution corresponding to this step is given by U„';" —=

U'0(0). (ii) The laser directed on the nth ion is then
turned on for a time of a 2~ pulse with polarization q = 1

and @ = 0. The corresponding evolution operator U2'

changes the sign of the state lg)„ll) (without affecting
the others) via a rotation through the auxiliary state
le&&„l0&. (iii) Same as (i). Thus the unitary operation
for the whole process js U, =—U U U which js
represented diagrammatically as follows:
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(3)

The effect of this interaction is to change the sign
of the state only when both ions are initially excited.
Note that the state of the CM mode is restored to the
vacuum state IO) after the process. Equation (3) is
equivalent to a controlled-NOT gate. To show this, let us
denote by I~) = (lg) ~ lep))/~2. Then, this proce-
dure can be summarized as lg) l~&„ lg& l~)„and
leo)~l~)„ lep&~l~)„. With an appropriate individual
(one-bit) rotation applied to the nth ion this procedure
then yields the controlled-NOT. These individual rota-
tions acting on a single ion (without modifying the CM
motion) can be performed using a laser frequency on
resonance with the internal transition (6„=0), polariza-
tion q = 0, and with the equilibrium position of the ion
coinciding with the antinode of the laser standing wave.
In this case, the Hamiltonian is

H„= (f1/2)[leo&„(gle ' + Ig)„(cole' ] . (4)

For an interaction time t = k7r/A (i.e., using a k7r

pulse), this process is described by the following unitary
evolution operator:

V„"(p) = exp ik (le—p)„(gle '~ + H.c.), (5)

so that

leo&.

:

cos(kyar/2)

Ig&„—i e' ~ sin(k7r/2) lep)„,

= cos(kyar/2)lep)„— ie '~ sin(k~/2)lg)„.

Thus the complete controlled-NOT gate for the
states Ie )Ie, & (e, = g, eo) is given by C „=
V„'i (—)U „U„'i (——) [15].

Nonlocal three-bit gates can be implemented in a
similar way between ions n, I, and l. The process
takes place in five steps: (j) Same as (i); (jj) same
as (ii), but with a vr pulse; (jjj) same as step (ii)
but with ion l; (jv) same as (jj); (v) same as (j).
The corresponding unitary operation for this process is
U' U,"U~' U„"U' . This procedure only changes the
sign of the state if all three ions were initially excited.
One can easily generalize this procedure to the case of
many ions. For example, a (control)"-NOT gate acting
on ions n1 02 nq corresponds to the unitary evolution

In summary, the two key elements behind the above im-
plementation of quantum gates are as follows. First, non-
local entanglement between individual qubits is achieved
by transferring the internal atomic coherence to and from

k= l,q=0
the CM motion shared by all the ions (Un

' ). Second,
as an intermediate step we "hide atomic amplitudes"
corresponding to the qubits in a third internal atomic

k=1,q=1
level let& (Un

'
), and induce 2' rotations via this

state to selectively change the sign of atomic amplitudes
k=2,q=1

(U~
' ). We note that no population is left in these

auxiliary atomic and CM levels after the complete gate
operation. Any population left in these states is an indi-
cation of an imprecise realization. This could be used to
implement an error detection scheme by probing the pop-
ulation of these intermediate states, for example, with a
laser inducing fiuorescence after each gate operation [16].

The core of Shor's factorization scheme [2] is the high
efficiency of a QC to find the period r of a given function
by doing a discrete Fourier transform (FT) on a periodic
state vector of the form I'Ir& ~ g, llr + k). Here k is an
integer number and l = 0, . . . , [(2 —k)/r] with [. . .] the
integer part. The FT is defined by the operation

FTIx) = I/42~ g e '"i
I y)

0.15

0
0.15

0
0.15

(c)

on the quantum registers. This FT can be decomposed
into a sequence of one- and two-bit operations [17,18].
The probability to measure the state Iy) of the quantum
register is then P~ = I(ylFTIW)l . Shor has shown that
this measurement gives with high probability an outcome
that allows one to calculate r.

To show the capabilities of an ion trap as a QC, and
to analyze how experimental uncertainties may affect the
final results [6], we have simulated the above scheme
on a (digital) computer. Figure 2 shows a comparison

1 p —]
77 ~ 10

Vp —U„;
j=2

71~ np
U"

f)l

I

10 ~ 2 77U' Vnl
50 100 150 200 250

Using similar ideas with different laser phases and inter-
action times one can implement other n-bit gates [8].

FIG. 2. Probability distribution P, after FT (see text): (a)
exact, (b) ion trap simulation, (c) simulation with 5% errors.
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between the exact results [Fig. 2(a)] for PY and the ion
trap simulation [Figs. 2(b) and 2(c)] for a state with
k = 4, r = 7, and eight ions. The existence of peaks in
this spectrum (separated by =2N/r = 256/7) allows one
to determine the period r. Similar to Ref. [17] one can
show that this probability distribution P~ can be obtained
from the physical process corresponding to the sequence
of operations VOTO W~ Vi . - W& 2V& i. Here W„=
W„'W„~ ~ ~ W„'+' is a sequence of two-bit operations
IVm Ul, o [ (I 2(n —

m))] Unl, l [ (I 2(n —
m))] Ul, l Ul, o

(n ( m), and V, —= V„'&2(—~/2) iS a One-iOn rOtatiOn [See
(2) and (5)]. The specific form of the pulse sequence can
be directly deduced from the definition of the operators
W, and requires two- and one-bit gates between the
ions. The simulation has been performed with the full
Hamiltonian (to all orders in the Lamb-Dicke expansion)
for W = 8 Ba+ ions in a trap with v = 2~ X 50 kHz.
The Rabi frequencies have been chosen as follows:
A = 22r X 1.5 kHz for resonant excitations (at the antin-
ode) and 0 = 27r X 15 kHz for off-resonant excitations
(at the node). The rest of the parameters correspond to
those of the Ba+ ions. As shown in Fig. 2(b), with these
realistic parameters, the result is nearly indistinguishable
from the exact one. From our numerical simulations
we could see that this result can even be improved by
increasing the trap frequency (or decreasing the Rabi
frequencies), in agreement with a perturbation theory
analysis for the terms neglected in (1) and (4). Note that
the total time required for the whole operation is about
35 ms, much smaller than the decoherence time due to
spontaneous emission (the lifetime of the metastable state
of Ba+ is about 45 s, so that the decoherence time is
=6 s). To analyze how experimental uncertainties affect
the final results we have carried out numerical simulations
assuming a 5% error in all the interaction times involved
in the operation, 1 kHz of error in aII'1 the laser detunings,
and a 5% 7r/2 error in all the angles in the problem (sit-
uation of the standing waves with respect to the position
of the ions, and phases of the lasers). Figure 2(c) shows
that even with all these errors the peaks in the distribution
are still maintained, and the system of ions is remarkably
robust to perform quantum computations.

Apart from one- and two-bit operations, (5) and (2),
one can also prepare the most general entangled state of
N ions [9,19]. For example, the maximal entangled state

X
I

—
&o

—I+&N —1
. . I+&il+&0)

can be obtained starting from ~g)N l~g)N 2. . ~g)0 (as
obtained after sideband cooling), by using the operations
VoUN —1,0 ' ' U2, 0U1,0VN —

1 Vl Vo [18].
In summary, linear ion traps are well suited to implement

a QC. This is due to the negligible decoherence in these
systems [9], as well as the possibility to manipulate the
internal and CM degrees of freedom with external fields,

and to perform efficient state measurements. We have
shown how to implement n-bit gates between n arbitrary
ions, and have illustrated the performance of such a system
with a numerical simulation. We believe that the present
system provides a realistic implementation of a QC which
can be built with present or planned technology.
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