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We identify a 2-bit quantum gate that is sufficient to build any quantum logic network. The existence
of such a 2-bit universal gate considerably simplifies the search for physical realizations of quantum

computational networks.

We propose an explicit construction of this gate, which is based on cavity

QED techniques and may be realizable with current technology.
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The superposition principle and unitary time evolution,
key features of quantum mechanics, make the simulation
of quantum systems on standard classical computers dif-
ficult and in many cases (exponentially) computationally
expensive [1]. This fact leads to the question of whether
complex problems can be solved more efficiently using a
computer based on fundamental quantum mechanical prin-
ciples than with a classical computer. The formal defini-
tion of a quantum Turing machine [2] and the introduction
of quantum complexity theory [3] showed the possible re-
alization of quantum computation, and gave first hints of
its increased power. Recently, Shor showed that the spe-
cific problem of factoring, which for known algorithms
takes exponentially increasing time on a classical com-
puter, can be solved in polynomial time using a quantum
computer [4].

Although presently existing computers use quantum
mechanical effects for their operation, they are not quan-
tum computers in the sense used in this paper. In standard
electronic computers, the computational process strictly
follows binary algebra and corresponds to a probabilistic
Turing machine. The state of a classical computer can be
determined at any time during the calculation. This is not
possible for a quantum computer. Since quantum coher-
ence must be maintained through the whole process, any
measurement of an intermediate state would irreversibly
influence the calculation.

A quantum computational network can be decomposed
into so called quantum logic gates [5], in analogy to
the situation for classical computers. In an extension of
earlier work on reversible computation [6,7], the universal
quantum logic gate was defined [5] to be a gate that
could be used to simulate any quantum logic gate. For
classical reversible computation, it has been shown that
the simplest universal gate has three input bits (and
three output bits). Examples of such reversible universal
logic gates are the Fredkin gate [8] or the Toffoli gate
[7]. Optical models for these gates have been recently
presented [9].

A number of interactions have been proposed for the
construction of quantum computers [10], but so far no ex-
plicit physical system has been shown to serve as a uni-
versal quantum gate. In this Letter we demonstrate that
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there exists a 2-bit quantum gate that is sufficient to build
any quantum logic network [11], a result that consider-
ably simplifies the search for physical realizations. In ad-
dition, we identify a realizable physical system, based on
the coupling of atoms to the photonic field of microcavi-
ties [12,13], that could be used to construct such a univer-
sal gate.

In classical computation, the bit @ can have the values
0 and 1, whereas the quantum bit is represented by
a two state system whose state can be expressed as
|,) = A1) + Agl0). Similarly, the state of a quantum
network consisting of n bits is given by |¥,) = >, 4|1
in the 2"-dimensional computational basis spanned by
) =10, 0,...,1,),1; ={0,1}. Following Deutsch [5] we
define an n-bit quantum logic gate by the 2”-dimensional
evolution matrix S, acting on |W¥,);,,

|\Pn>0ut = Sqllpn>in' (1)

Two essential features of any quantum computational
process should be noted. First, |¥,) can be a coherent
superposition of the basis states, whereas in classical
computation operations are defined only for the basis
states. Second, the unitarity of the quantum mechanical
evolution implies reversibility of the computation.

By generalizing the Toffoli gate, Deutsch found
a quantum gate (referred to here as the ‘“Deutsch
gate”) that is universal for all quantum computa-
tions. A representation of the Deutsch gate, ex-
pressed in terms of the 3-bit computational basis
{la, b, )} = {l0,0,0),10,0,1),....]11,1,0), |1, 1,1)} is given
by

1 0 0 0 0 O 0 0
01 0 0 0 O 0 0
0O 01 0 0 O 0 0
S(r) 0O 0 01 0 O 0 0
¢ (oo o0 o0 1 0 0 0
0O 0 0 0 0 1 0 0

0 0 0 0 0 0 icos(wrr/2) sin(wr7/2)

0 0 0 0 0 0 sin(wr7/2) icos(w7/2)

2)
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This gate changes the state of the quantum bit ¢ (“target
bit”) only for input basis states in which both “control”
bits a and b are equal to 1 (ab = 1).

The universal 2-bit quantum gate is a generalization of
the reversible “measurement gate” [S5]. The two outputs
of the measurement gate are defined in terms of its
inputs by aou = ain, and boyy = ain ® by, Where & refers
to the logical exclusive-OR (XOR) operation. A simple
generalization of the measurement gate to the quantum
domain yields the operator (expressed in terms of the 2-
bit computational basis {|a, b)} : a,b € {0,1})

SM = > (3)

SO o
S o= O
-0 O O
el el

which we refer to as the “quantum measurement gate.” A
further generalization of the measurement gate yields a 2-
bit universal quantum gate, defined by

1 0 0 0
0 1 0 0
0 0 €M cos(mr/2) e 7/ sin(wrr/2)
0 0 e "Msin(mr/2) /Y cos(mr/2)

€
(1)

We note that, for 7 = 1,(Sy ) = Su, so s},‘) can be
considered a “square root of XOR.” To demonstrate the
universality of (4), it is sufficient to build a network from
sﬁ? that performs the cemputation of the 3-bit Deutsch
gate Sp. The evolution matrix of a gate operating on
only two of three bits is given by the tensor product
(®) of the 2-dimensional unity matrix with the respective
quantum transformation. For example the action of the
above defined 2-bit gate on the bits b and c only is given
by SL(,T{)H;,,,E} = ]1a®Sg[)b,C]. We then find that

) /2 -1 T2 /2
So" = Sumiciab) Sufab.c)  Smicias] Subiac] Suasbe] - ()

For 7 irrational, both (sE?)—' and S, can be obtained by
repeated application of S(J) [14]. si}’ is therefore uni-
versal. Figure 1 shows the quantum network expressed
by Eq. (5). Insight can be gained into the action of this
network by noting first that for classical bits @ and b the
logical AND of a and b can be expressed in terms of arith-
metic operations on the bit values as ab = [a + b — (a @
b)]/2. Second, from Fig. 1, we see that bit ¢ undergoes

FIG. 1. Decomposition of the universal 3-bit quantum logic
gate into a network of 2-bit quantum gates.
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three conditional rotations, the first two through an angle
7/2, conditional on a and b, respectively, and the third
through an angle —7/2, conditional on a ® b. Because
of the quantum mechanical superposition principle, these
rotations add arithmetically. The net result is a rotation
about an angle 7, conditional on ab, which is the action
of the Deutsch gate.

The identification of a 2-bit universal quantum gate
considerably simplifies the search for implementations of
quantum computational networks. The equivalence of the
quantum measurement gate (3) to an ideal quantum non-
demolition (QND) measurement points to already exist-
ing QND schemes as candidates. QND measurements are
currently investigated for a number of different systems.
In most cases, however, either the coupling is too small
for single particle resolution [15], or there is a lack of ex-
perimental expertise for otherwise very promising systems
[10]. Cavity quantum electrodynamics [13,16] is to our
knowledge the only candidate capable of realizing quan-
tum logic gates in the near future [17]. Recent results
[13] have shown that QND measurements can achieve sin-
gle particle (photon) resolution, a condition necessary for
construction of a universal quantum gate.

We now outline specific implementations based on
cavity QED of the 2-bit universal quantum gate. Our
proposed implementations consist of microwave cavities,
Ramsey zones, and a set of two-level atoms. There is
never more than one photon in a cavity, so the state of the
cavity field can be described in terms of the basis states
[0y and [1), corresponding to the vacuum and one photon
states, respectively. The atoms are the carriers of the bits
(between gates), and are described by the basis states |g)
and |e), which correspond in the computational basis to
|0) and |1), respectively.

Two different kinds of atom-cavity interactions are
used in our schemes. In the “on-resonant” atom-cavity
interaction, the cavity is tuned exactly to the atomic
transition, and the interaction Hamiltonian is given by

How = ihQ(0—a’ — 0.,a), (6)

where o, = |e){g| and o_- = |g){e|, and ; is the one
photon Rabi frequency. In the “off-resonant” interaction,
the cavity frequency is sufficiently detuned from the |g)
to |e) transition frequency that there are no transitions
between these two levels during the interaction. Here, the
Hamiltonian can be modeled by [18]

Hopr = h(Qa/2)ata(le) (e] — 1g)(gl), @)

where (), is the change in atomic level spacing per
photon in the cavity. In our schemes, the on-resonant
interaction is used to transfer quantum states between
atom and cavity, while the off-resonant interaction is used
to produce conditional phase shifts in the atomic states,
controlled by the photon number of the cavity field. These
two types of interactions can be produced from a single
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atomic species by appropriate Stark shifting of the atomic
levels.

The Ramsey zone consists of a classical rf field, which
can produce an arbitrary rotation of the atomic two-
level systems when appropriate values of the frequency
and amplitude of the field are used. In the following
discussion, we assume the Ramsey zone produces a 7 /2
rotation about the y axis in spin space and is described by
the operator where o, = i(le) (gl — |g){el).

When an atom passes sequentially through a Ramsey
zone R, a cavity (with off-resonant interaction of du-
ration T), and another Ramsey zone R™!, the resulting
transformation is

U(¢) = R 'explipatale)(e)R
=1 - ata)l + ataR:(¢), (8)

where ¢ = Q,T, and R:(¢p) = [1cos(¢/2) —
io,sin(¢/2)] represents a rotation of the atomic
state by an angle ¢ about the x axis. The transforma-
tion (8) results in a rotation of the atomic state when the
state of the cavity field is |1), but leaves the atomic state
alone when the cavity state is [0). When both input bits
(a and b) are carried by atoms, the gate U(¢) can be
realized in the following way. Before the off-resonant
interaction (8) is carried out, the state of the control bit
(a) is transferred to the cavity (originally in the vacuum
state |0)) by the on-resonant interaction [Eq. (6)] with
strength ,7 = 7. The atom always leaves the cavity
in the ground state and can be discarded [19]. Atom b
then passes through the Ramsey zones and cavity (with
the off-resonant interaction), and the system undergoes
the interaction described by Eq. (8). Afterwards the
state of the cavity can be transferred again to that of an
atom, thereby accomplishing the operation of U(¢) [20].

To realize the more general operation of the universal
2-bit gate sﬁ}’, the operation U(¢) with ¢ = 77 is
first performed (see Fig. 2). In addition, a conditional
phase shift of § = 7 /4 needs to be carried out on the
“target” bit b, which can be achieved [21] simply by
rotating the control bit ¢ an angle 6 about the z axis
[R.(0) = e'%2|e)(e| + e %/2|g)(g|]. This rotation also
produces a global phase shift of —6/2, which has no
physical consequences. In our proposed implementation,
this rotation is achieved by passing the atom carrying bit
a through a Ramsey zone after it leaves the cavity. Here
we emphasize that the appropriate choice of the Ramsey
zone transformation and phase shifts ¢ and 6 would
allow one to produce an arbitrary unitary transformation
of bit b, conditional on the state of the control bit a.
In particular, choosing ¢ = 7 in Eq. (8) and 6 = 7 /2
yields the measurement gate Sy,.

The construction of the Deutsch gate, according to
the decomposition of Eq. (5), would require five cavities.
Only three cavities are required, however, if the bits a, b,
and the result of a ® b are stored in these three cavities
(labeled C,, C,, and Cj3), respectively. The following
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FIG. 2. Implementation of the 2-bit universal quantum logic
gate by cavity QED techniques: The rectangles represent
the cavities, with the type and strength of the atom-cavity
interaction indicated. The state of the cavity after the passage
of the atom is shown in the upper right corner, assuming basis
states ({la, b)} : a,b € {0, 1}) are used for inputs. The trajectory
of the atom is indicated by the solid line. The shaded regions
represent Ramsey zones. (a) The state of the control bit a
is transferred to the cavity. (b) Atom b is sent through the
Ramsey zones and cavity and undergoes a conditional rotation.
(c) The state of the control bit is transferred back to an atom,
which is then rotated about the z axis by a Ramsey zone.

steps outline the operation of the Deutsch gate. (i) Atoms
a and b are transferred (by the on-resonant interaction) to
C, and C,, respectively. (ii) A third atom x (prepared in
state |g)) is sent through a Ramsey zone R, off resonantly
through C; and C, (with Q,7, = ), through a second
Ramsey zone R™!, and then resonantly through Cs. After
passing through the two Ramsey zones and two cavities,
the atom x carries the computation ¢ ® ». The resonant
interaction of x with Cs transfers the state of x to Cs.
(iii) Atom c¢ passes through a Ramsey zone R, all three
cavities, and another Ramsey zone R~!. The atom-cavity
interactions are all off resonant, and satisfy the conditions
Q,1 = ¢ /2 for both C; and C,, and Q75 = —¢ /2 for
C5. Under these conditions, the total rotation experienced
by atom c¢ after interacting with the three cavities is 0
unless both a and b are initially in the excited state, in
which case the rotation of atom c¢ is Ri(¢). (iv) The
information in C; is removed by passing an atom x’,
initially in |g), backwards through Cs, and then through
cavities C, and C;. The interactions are the same as for
step (ii) above, and the action of x’ undoes the action of x.
(v) Finally, the states of cavities C; and C, are transferred
back to atoms (with the on-resonant interaction) for the
readout of bits @ and . To produce the controlled phase
shift on the target bit ¢, appropriate rotations R, must be
performed on the control bits a and b, as well as on the
bit carrying a @ b.

We have shown in this Letter that cavity QED tech-
niques can, in principle, be used to construct an arbitrary
quantum computational network. The number and differ-
ent kinds of experimental steps necessary to realize even
the 3-bit Deutsch gate, however, indicate that extended
networks would be exceedingly difficult to build. It ap-
pears that the principal difficulty with the cavity QED
technique is the required coherence between all cavities
involved and the control of the individual atoms at the
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cavities. Furthermore, in current cavity QED experiments
a thermal source of atoms is used, giving rise to a random
distribution of atomic arrival times. A first demonstra-
tion of a quantum gate could be made with a weak atomic
source, while disregarding those cases in which the wrong
number of atoms has traversed the cavity. For a practi-
cal implementation, however, a controlled source of single
particles is necessary. Such a source can be constructed
for photons (which would carry the bits) by using para-
metric down conversion. While the interaction (7) is ap-
plicable to pairs of photons in a Kerr medium [15], the
strength of the interaction is currently orders of magni-
tude too small to be of practical value.

In this Letter we have demonstrated the possibility of
performing all quantum logic operations with networks
consisting of 2-bit universal quantum gates. This univer-
sal quantum gate can, in principle, be realized with cav-
ity QED techniques. External noise and quickly decaying
coherence may limit the performance of such a device, but
continuing improvements in cavity lifetime and control of
the atom-field coupling will likely allow demonstration of
the first universal quantum logic gates in the near future.
The generic interactions [particularly Eq. (7)] described
in this paper can also be applied to other systems, e.g.,
spin-spin coupling of nuclear spins, quantum dots [10],
interactions between trapped ions [17], or photon-photon
coupling in an all-optical realization. It is unknown in
which of these or any other systems the numerous prob-
lems of generating single particle states, weak coupling,
and noise and decoherence [22] can be solved, so that ex-
tended quantum networks can be built.
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