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Network of Neural Oscillators for Retrieving Phase Information
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We propose a network of neural oscillators to retrieve given patterns in which the oscillators keep

a fixed phase relationship with one another.

In this description, the phase and the amplitude of the

oscillators can be regarded as the timing and the strength of the neuronal spikes, respectively. Using
the amplitudes for encoding, we enable the network to realize not only oscillatory states but also

nonfiring states.

In addition, it is shown that under suitable conditions the system has a Lyapunov

function ensuring a stable retrieval process. Finally, the associative memory capability of the network

is demonstrated numerically.

PACS numbers: 87.10.+e, 05.90.+m

Although the past decade has seen considerable ad-
vances in studies of neural networks, recent research seems
to reveal the limitation of the current network models, com-
posed of McCulloch-Pitts units or modifications of these.
Provided that we will study the steady states of the net-
work, these units are valid for the modeling of actual neu-
rons as a first approximation. In fact, many fruitful results
have been reported by using these units [1]. However,
when it comes to treating the dynamical behavior of the
network, these models may fail to capture the essence of
the dynamics. This is because these models ignore much
of the detailed behavior of real neurons, such as the timing
of neuronal firing and internal dynamics [2—4]. In some
cases, such behavior seems to play a significant role in neu-
ronal systems. For example, several recent experiments
suggest that the temporal coherence of neuronal activity,
synchronization of pulse, may contribute to segmentation
of visual scenes [5]. Central pattern generators (CGPs)
provide another good example [6]. It is widely believed
that a well-identified group of neurons (a CGP) controls
rhythmic behavior of animals, i.e., locomotion, swimming,
and so on. Since there are generally several distinct rhyth-
mic patterns, it is obvious that the CGP can generate sev-
eral firing patterns for which there are different phase re-
lationships among the neuronal pulses.

To construct a theoretical model of the above systems,
we need to describe the temporal features of neuronal
activities, such as synchronization and phase locking.
However, a McCulloch-Pitts description is based on the
assumption that information is encoded only by the
averaged activities of the neurons. Therefore, such a
description is too crude to represent temporal features
of the firing states naturally, for example, the relative
phases of the spikes. Hence, we need to construct another
model which provides a suitable framework to grasp such
a temporal aspect of real neural networks. At the same
time, it is required that such a model be simple enough to
be mathematically tractable.

For this purpose, a model in which neuronal activities
take the form of oscillators is an attractive candidate [7—
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9]. In this case, we may practically consider that such an
oscillator represents a system of neurons which exhibits
periodic behavior, instead of a single neuron. It is well
known that in weakly coupled nonlinear oscillatory sys-
tems the complex original dynamics can be reduced to a
simpler phase dynamics [10,11]. Using such a reduction
technique, we can treat the timing of neuronal firings as
the phase of the oscillators naturally. Moreover, it is de-
sirable that the nonfiring state can also be expressed by
the model. To express the nonfiring state, we will intro-
duce an amplitude variable into our model phenomenolog-
ically. It is natural for the amplitude to be thought of as
the strength of the pulse. Pursuing this idea, the nonfiring
state can be represented by the zero amplitude of the os-
cillator. Because of the phenomenological nature of this
amplitude, the theoretical relation between real systems
and our model is less clear than in the case of the phase
models. However, it is expected that the putative range of
the applications of our model is extended by the descrip-
tion of the nonfiring state. Moreover, it seems that our
model is useful to explore the role of temporal correla-
tions among neurons in real systems and the possible ap-
plications of temporal coding in artificial neural networks.
For the neuron model, therefore, we will adopt an oscilla-
tory unit whose state is determined by both the phase and
the amplitude.

Now we will construct a neural network model to re-
trieve phase information. For convenience of expression,
we denote the state of the ith neuron by the complex vari-
able W; with amplitude r; and phase ¢;. In this descrip-
tion, a nonfiring state of the neuron corresponds to W; =
0, while a firing state corresponds to W; = exp(iQ2;7) ({;
is the frequency of the ith firing neuron.) We consider a
network of N neurons whose dynamics are governed by

dw;

N
dt = U(W,‘,Wi) + k(z C,‘jo - Wi>, (1)

Jj=1

where the real variable k represents the total coupling
strength, the complex variable C;; represents the effect
of the interaction between the jth and ith neurons, and
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W; denotes the complex conjugate of W;. The function
v(W;, W;) should be chosen so that the system can exhibit
limited cycle behavior in the absence of the coupling term.
In addition, we assume that the system (1) is invariant
under uniform phase translation,

W, — Wiexp(ido), (2)

where ¢ is an arbitrary real constant. This requirement
arises from the fact that information is encoded not by
the absolute time but by the relative time of neuronal
spikes. Correspondingly, the relative phase relationships
among the oscillators are relevant to encoding the infor-
mation (not the absolute phase values). In this paper, for
v(W;, W;) we will examine two types of functions satisfy-
ing the above two requirements.

Here we define notation for later discussion. Let &
(uw=1,...,p) be a set of patterns to be memorized,
where p is the total number of the patterns. We should
remark that because of the invariance (2), all patterns
generated by the uniform phase translation £/ exp(i¢g)
represent the same pattern as &;. We also define p
overlaps M, as the projections of the current state on the
p embedded patterns,

1
M= 3

N
D> Ewyl.
j=1

At first, we consider the situation that all neurons are in
the firing state. Stored patterns can then be characterized
by the parameters oF [&f = exp(i6!)]. Because of (2),
the effective number of degrees of freedom of these
parameters is N — 1 for one pattern. As a simple choice,
we consider the following dynamics of the first model:

% =1+ iQ)W; — (1 + io)|W;*W;
! N
+ k<Z CijW; — Wi), “4)
j=1
where (); can be considered as natural frequencies of
neuronal spikes in the absence of external inputs and ¢
is a real parameter. The system (4) without the coupling
terms is often referred to as the Stuart-Landau equation.
In general, it is well known that the Stuart-Landau
equation is derived from a general ordinary differential
equation near a Hopf bifurcation point [10]. Therefore,
this choice seems to be natural for oscillatory systems.
For simplicity, we assume that ¢ = 0 and ); = ). Under
this assumption, we can eliminate () by the transformation
W; — W;exp(iQt). After simple calculations, therefore,
(4) reduces to

dw; <
d—t, = W,‘ - IW,"ZW,' + k(z C,‘jo - W,) (5)
j=1
Next we will show how given patterns are embedded
in the network of oscillators, that is, how to determine
the synaptic efficacies. At first, let us consider the condi-
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tion that Eq. (5) has the solution W; = &k Substituting
w; = & into (5) and using |£| = |exp(i6/)] = 1, we
obtain Y, C;;¢; = £°. This condition can be rewrit-
ten in matrix form as CP = P where the N X P ma-
trix P is defined by P;; = £l Provided that the total
number p of the memorized patterns is smaller than N,
the synaptic efficacies satisfying this condition are then
given by C = PPt + B(I — PP') where P' denotes the
pseudoinverse of P, T denotes the unit matrix, and B
is an arbitrary matrix [12,13]. If the patterns are lin-
early independent, the pseudoinverse matrix Pt is given
by Pt = 1/N(1/NP"P)"'P7, where P and P” denote the
complex conjugate and the transpose of P, respectively.
Moreover, assuming B = O for simplicity, we obtain

PP N
Cy = % > D (AT uegkE, Ay = % D EE. ()
k=1 1=1 k=1
with & = exp(i6/). It is easily found that the synaptic
matrix (6) is Hermitian, that is, C;; = C'j,-. Note that
the synaptic prescription (6) recovers the generalized
Hebbian rule C;; = (1/N) S g,"g;‘ if the patterns are

orthonormal.

There are two trivial cases in this model.
For p =1, the synaptic efficacies are given by
Ci;; = (1/N) exp(i@,-1 — ie}). In this case, applying

the transformation W;exp(—if;) — W;, the dynamics of
(5) reduce to

1 N
- = Wi - lWi|2W,‘ + k(‘ﬁ Z Wj - W,) (7)
j=1

This equation has recently been studied by several authors
[14,15]. This situation corresponds to the Mattis state in
spin glass models. On the other hand, for p = N we
obtain C;; = §;;. This implies that the couplings between
the oscillators vanish and the dynamics of the network
reduces to that of N independent oscillators.

We will show that the system (4) reduces to a simpler
set of phase oscillators under the conditions that the
coupling is weak and ¢ = 0. In the limit of weak
coupling k& ~ O(e), the deviation of the amplitude r;
from r = 1.0 may be neglected at first order. Inserting
W; = r;exp(i¢;) into (5), this approximation immediately
yields

déi

o~ Qi+ kD ICylsin(g; = ¢ + @), (8)
J

where a;; are defined by C;; = |C;;lexp(i;;). Since the
synaptic matrix is Hermitian, we get |C;;| = |C;;| and
a;; = —aj;. Note that «;; = —aj; leads a; = 0. As
a result, self-coupling terms do not contribute to the
dynamics of the network.

In the previous model (4), all neurons are assumed to
exhibit periodic firing states. However, such an assump-
tion is not realistic because in a real system, for any
given patterns, some neurons will be in a resting state.
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In the second model, we consider another type of dynam-
ics where the amplitude plays a crucial role in represent-
ing the nonfiring state. To realize a stable nonfiring state
in retrieval patterns, it is desirable that the single neu-
ron is able to exhibit both a periodic firing state and a
nonfiring state. To satisfy this requirement, we choose
v(W;,W;) so that the dynamics of a single neuron can
have both a limited cycle W; = exp(i{);¢) and a station-
ary fixed point W; = 0. As a simple choice, we employ
v(Wi, W) = (=1 + iQ)W; + 4|W|>?W; — 3|W|*W,. As
is the case of the first model, assuming that the natural
frequencies (); are identical to (), we can eliminate ().
Consequently, the dynamics of the network are described
by the following:

aw;
dt

= — W, + 4WLPW - 3IWltW,

N
+ k(z CyW, — W,-). )
j=1

We next address the question of how to make the
synaptic connections for patterns which include the possi-

bility of nonfiring states. The patterns are then defined by

for firing state,

g _ [exption)
L 0 for nonfiring state .

(10)
Putting the above patterns into (9) and using |£] =
or 0, we obtain the same condition for the synaptic
connections CP = P as in the first model. Therefore,
if p < N and the patterns are linearly independent, we
can apply the same procedure as in the first model.
As a result, the synaptic matrix is given by the same
prescription (6). Note that the condition C;; = C‘jTl- is kept
even if the memorized patterns include some nonfiring
states.

Above, it was shown that we can set the connections so
as to make the patterns to be memorized &/° the solutions
of the dynamical equation (1). To recall the embedded
patterns from noisy ones, however, it is required that
such solutions are the attractors of the dynamics. The
existence of such asymptotic behavior is guaranteed by
the existence of a Lyapunov function. Here, we will
show that in our models a Lyapunov function exists if the
synaptic matrix is Hermitian and Q; = ). The models
which we have discussed so far can be written in the form

dW, &
dtl = ‘U(W,‘,W,‘) + k(z C,‘jWJ' - Wi>, (11)
j=1
with
Sy Wi — |W;|*W;,
U(Wi,W,‘) = {_Wi + 4|Wi|2Wi _ 3|W,'|4W (12)

Let us introduce a function V(W;, W;) by the following
definition:
= avV(W,, W,)
Wi, W) = ————=—
v ) W,

and
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FIG. 1. Typical temporal pattern of retrieval process in the
second model. Black horizontal bars show active phases which
are defined by ReW; > 0.5. The network succeeds in retrieving
one of eight memorized patterns. Note that the memorized
pattern includes nonfiring states.

< VW, Wy)
o(W;,W;) = —————, 1
( ) oW, (13)
where we have regarded W; and W, as independent
variables. For example, the corresponding functions
V(W;, W;) for (12) are given by

W2 + 3l

W, W;) =
VYL WD = 1w = 2wild + Twile.

(14)

Provided that such a function V(W;, W;) exists, the Lya-
punov function is given by

N
L(W;,W;) = Z V(W;, W)

P
__Z_Z

t=1

Mz

+ E W)
1

~.
Il

+kZH%R (15)
i=1

It is easily proved that L only decreases un-

der th~e dynamics of (11). Using the function
V(W;,W;), we can revzrite the model (11) in the
form dW;/dt = —8L/oW; and dW;/dt = —dL/oW;.

From these relations, we immediately get

dL _i( oL dW; . oL dW,-)
dt —\ oW, dt oW, dt
N

N
v(W;, Wt) + k(z Cijo - W,—>
=

2
=0.

(16)

Therefore, L can only decrease as a function of time.
When the network converges to the memorized state
W; = fl-”, L does not vary with time. Note that L is
invariant under the uniform phase translation (2).

To confirm the ability of the network, we carried out
some numerical simulations. Among these simulations,
we present one typical result. In this simulation, we used
a network of 50 oscillators whose dynamics are governed
by Eq. (9). The reason for using the second model is that
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FIG. 2. Time development of eight overlaps in the same
simulation as Fig. 1. The solid line shows the overlap M,
concerning the retrieval pattern £'.

we want to demonstrate the ability of the network to
retrieve phase patterns which include nonfiring states. In
all, eight patterns were stored by means of the synaptic
prescription (6). Figure 1 shows one typical temporal
pattern of the retrieval process in which the parameter
values are k = 1.0,Q) = 27. Although Q make no
contribution to the dynamics of the network, to express
the phase relationships visually, the pattern in Fig. 1 is
illustrated in the rotating frame. In this context, the
black horizontal bars represent active phases defined
by ReW; > 0.5. The network was initially given
the noisy pattern &'. The first pattern was &' =
(1’ 1,1,1,0,0,1,1,1, 1’ei(277/5)’ei(277'/5)’ ei(27r/5)’ei(2ﬂ'/5)’0’ 0,
ei(27r/5)’ ei(21'r/5)’ ei(27r/5)’ ei(lw/5)7 o
ei(87r/5)’o’ 0, ei(87r/5)’ ei(87r/5)’ ei(STr/S)’ ei(Sn’/S)). The remain -
ing seven patterns &/ (p = 2—8) were generated at
random. That is, taking the form &= At exp(ie,-”), o
were chosen at random from a uniform distribution
between 0 and 27, and A,’»L were independent random
variables  obeying the  probability  distribution
P(AY) = 16(AF — 1) + 28(Al). Obviously, both the
amplitudes and the phases were corrected dynamically.
In the same simulation, time development of overlaps is
shown in Fig. 2. It is clearly found that the network
succeeds in retrieving one of eight memorized patterns.
We would like to make some comments here before
concluding. First, the synaptic efficacies C;; were regarded
as complex numbers. This may be explained naturally by
the fact that the neurons are coupled via more than one
component [16]. Secondly, even if the natural frequencies
Q; have a nontrivial distribution, it is expected that for k >
k. (a certain critical value) the retrieval of the patterns will
be achieved by the network. Finally, it is well known that
the storage capacity of an oscillator network constructed
by using the Hebbian rule is given by o, = P/N = 0.0377
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ei(STr/S)’ ei(87r/5), ei(87r/5),

[17-19]. Therefore, using the generalized Hebbian rule,
we expect that our models work well when o < a..

In conclusion, we proposed a network of oscillators
for the retrieval of phase information. We showed that
this network has the ability to retrieve given patterns
in which the oscillators keep a fixed phase relationship
with one another. We would like to emphasize that in
the case of the second model, the network can retrieve
patterns which include nonfiring states. Furthermore, it
is shown that under suitable conditions the system has
a Lyapunov function ensuring a stable retrieval process.
Using numerical simulations, we confirmed the good
performance of our models. Consequently, we believe
that the proposed models serve as a convenient starting
point for the study of oscillatory neuronal systems.
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