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First-Principles Determination of Chain-Structure Instability in KNb03
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A complete mapping in the Brillouin zone of the structural instability associated with the ferroelectric
phase transitions of KNb03 has been obtained by first-principles calculations using a linear response
approach. The wave-vector dependence of the instability reveals pronounced two-dimensional character,
which corresponds to chains oriented along (100) directions of displaced Nb atoms. The results are
discussed in relation to models of the ferroelectric phase transitions.

PACS numbers: 77.80.—e, 63.20.—e, 64.60.—i

Potassium niobate (KNb03) is one of the most exten-
sively studied systems of the perovskite family of fer-
roelectric materials. Like BaTi03, it crystallizes in the
simple cubic perovskite structure at high temperatures
(above 710 K for KNb03), and undergoes three ferro-
electric phase transitions at lower temperatures, resulting
in a series of distorted perovskite structures: the tetrago-
nal phase, the orthorhombic phase, and the ground-state
rhombohedral phase [1]. The character of the phase tran-
sitions in these two systems is therefore expected to be
similar. Attempts to understand the origin of these phase
transitions were initially shaped by "soft-phonon" models
[1]. This theory considers the transitions as displacive and
induced by the softening of a zone-center TO mode as the
transition temperature is approached. These models were
successful in explaining measured temperature dependent
changes of the soft-phonon frequency and polarizability as
the transition temperature is approached from above [1].
Somewhat later, however, Comes, Lambert, and Guinier
[2] suggested that the transitions may be of the order-
disorder type, introducing the eight-site model to explain
diffuse x-ray scattering patterns in the orthorhombic phase
of KNb03. The interpretation of the streak pattern in
terms of disorder has been disputed by Hillier [3], who at-
tributed it instead to dynamical scattering. A more recent
experimental investigation of the diffuse x-ray scattering
by Holma, Takesue, and Chen [4] concluded that the re-
sults were in better agreement with the dynamical inter-
pretation. However, there have been other experiments
[5] that provided support for the role of disorder in the
high-temperature phases. Thus, although these perovskite
systems have been studied for decades, the structure of
the high-temperature phases and the related character of
the phase transitions continue to be a source of contro-
versy, with contradictory evidence for quasistatic disorder
versus soft-mode behavior.

In this Letter, we report first-principles lattice dy-
namics calculations for the ideal cubic perovskite struc-
ture of KNb03, using a linear response approach within
the framework of the linearized augmented plane-wave
(LAPW) method [6]. The linear response approach
greatly reduces the computational burden in mapping out

phonon dispersions in the full Brillouin zone (BZ). Most
theoretical work has been concerned with the zone-center
phonon instability, which is associated with the phase
transitions, much of it based on empirical or model calcu-
lations. To understand the possible roles of disorder and
dynamical scattering, however, one needs to know the en-
ergetics of the these systems throughout the BZ. This
problem has only been addressed by model calcula-
tions (e.g. , see Ref. [7]). First-principles local-density-
approximation (LDA) calculations have recently been
applied to study the basic electronic, structural, and dy-
namical properties of the perovskites [8—10], but the
computational inefficiency of the traditional supercell ap-
proach makes it difficult to calculate phonon frequencies
at other than a few high-symmetry points. The results of
our calculations show a soft-phonon dispersion that ex-
hibits an instability of a pronounced two-dimensional na-
ture and suggests a one-dimensional chain-type instability.

The calculations were performed at the experimental
lattice constant (extrapolated to zero temperature), a =
4.016 A. A special k-point 4 x 4 x 4 grid [11]was used
for k-point summation in the self-consistent calculations.
(We have calculated the phonon frequencies at the zone
center with the 6 && 6 && 6 grid. The soft-mode fre-
quency was found to become more unstable by about
50i cm ' while the other modes are relatively unaf-
fected. ) The Wigner interpolation formula [12] was used
for the exchange-correlation potential. Pseudopotentials
were used to exclude the tightly bound core states, which
improves the numerical stability of the calculated forces
[6]. The relatively loosely bound K(3s) and Nb(4s, 4p)
states were pseudized and included in the lower window
of a two-window calculation. Approximately 540 LAPW
basis functions are used at each k point. Phonon dis-
persions in the harmonic approximation were obtained
in the full BZ as follows. First, ab initio calculations
were carried out to determine the dynamical matrix at
ten irreducible phonon wave vectors of a 4 X 4 X 4 uni-
form mesh, which by symmetry gives the dynamical ma-
trix at all mesh points. Interpolation is then performed
which properly takes into account the LO-TO splitting at
the zone center by separating the dynamical matrix into
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a long-range dipole-dipole term and a short-range term
[13]. The former is obtained from the calculated Born
effective charges and dielectric constant using the Ewald
summation technique. The remaining short-range part is
then interpolated using real-space force constants, which
are found through Fourier transform for atoms within two
unit cells of each other in each direction. The linear re-
sponse approach also makes possible the calculation of the
dielectric constant and the Born effective charges, which
are necessary for this procedure.

We first present results that can be compared with
previous calculations and experiment. Table I compares
our dielectric constant to experiment and our calculated
Born effective charges to those obtained previously by
the Berry's phase calculations of Resta, Posternak, and
Baldereschi [14] using the LAPW method and by Zhong,
King-Smith, and Vanderbilt [1S]using a plane-wave pseu-
dopotential method. Our calculated dielectric constant,

= 6.34, overestimates the experimental value, e
4.69, a well-known tendency of the LDA even in sim-
pler materials [16]. The high symmetry of the cubic per-
ovskite structure results in an isotropic effective charge
tensor for the K and Nb atoms, but the lower site symme-
try of the oxygens results in two distinct diagonal val-
ues —for displacements along and perpendicular to the
Nb-0 bonds, labeled 1 and 2, respectively. There is gen-
erally good agreement between these different calcula-
tions for the effective charges. In particular, they all yield
large values for Z*(Nb) and Z&(O). The origin of these
large values is the large covalent interactions between
the transition-metal and oxygen atoms in these materials
[8]. This has been convincingly demonstrated recently
by Posternak, Resta, and Baldereschi [17]. Table II com-
pares phonon frequencies at the I point with the frozen-
phonon LAPW calculations of Singh and Boyer [9] and
Zhong, King-Smith, and Vanderbilt [15]. All the calcula-
tions find unstable TO modes at the I point with similar
imaginary frequencies corresponding to the observed soft
mode. The LO mode frequencies were obtained from the
following dynamical matrix:

TABLE II. Comparison of our calculated I"-point phonon
frequencies (cm ') in KNb03 with LAPW and plane-wave
frozen-phonon calculations and experiment.

LAPW-LR

TO modes
147i
170
477
262

LO modes
168
405
743

LAPW'

115i
168
483
266

PW'

143i
188
506

183
407
899

Experiment'

Soft
198
521
280"

190
418
826

'Reference [10].
bReference [15].
'Reference [18].
Measured in the tetragonal phase, T = 585 K.

where D is the zone-center dynamical matrix without
macroscopic field, Z,

*
(M;) is the Born effective charge

tensor (mass) of atom t, 0 is the unit cell volume, n, P
are Cartesian indices, and q is a unit wave vector. All
LO modes were found to be stable due to the contribution
of the macroscopic field. (The last TO mode is infrared
inactive, and thus does not exhibit LO-TO splitting. ) The
results of Zhong, King-Smith, and Vanderbilt employed

= 4.69, extracted from experiment, whereas we used
our larger calculated dielectric constant.

The calculated phonon dispersion curves are plotted
along high-symmetry directions in Fig. 1, using the real
space force constants as discussed above. The I X,
I M, and I R lines are along the (100), (110), and (1 1 1)
directions, respectively. Imaginary phonon frequencies
(of unstable modes) are represented as negative values.
We will be mainly concerned with the "soft" modes,
as these are relevant to the phase transitions. As seen
in Fig. 1, there are two modes that are unstable along
the I X direction. These are TO modes that involve

2
Lo To 477 e
in, jp in, jp q'M; M~

(Z,*.
q) (Z,*.

q)p 750

z.(K)
z*(Nb)
z,"(0)
z,*(0)

LAPW-LR

1.14
9.37

—6.86
—1.65

6.34

LAPW'

0.82
9.13

—6.58
—1.68

1.14
9.23

—7.01
—1.68

4.69'

TABLE I. Comparison of calculated Born effective charges in
KNb03.

~ 5OO-

(3

250
CF
CD

LL

15

15

'Reference [14].
'Reference [15].
'Derived from experiment.

FIG. 1. Calculated phonon dispersions of KNb03 in the ideal
cubic structure at the experimental lattice constant. The letter
L indicates longitudinal modes at the zone center.
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largely the motion of the Nb and 0 atoms along the (100)
directions. One of these modes remains unstable along
rM and MX directions. Examination of the eigenvectors
reveals that it is polarized along (100). The other TO
mode, which now cannot remain polarized along (100),
stabilizes rapidly away from the I X direction. Along
I R and MR, the unstable mode(s) again stiffen up
rapidly away from I and M points, as the polarizations
deviate from the (100) directions. Thus an unstable mode
arises for all wave vectors perpendicular to the (100)
directions, i.e., in the (100) planes, with the displacements
parallel to these directions. Away from these planes,
the frequency of this mode rises rapidly and becomes
stable at about one-fifth of the way to the zone boundary.
This pronounced two-dimensional instability is better
visualized in Fig. 2, in which the frequency isosurface
of the lowest unstable phonon branch corresponding to
cu = 0 is shown. (The cubic BZ is outlined by the
straight lines. ) The region of instability, ru (q) ( 0,
lies between the three pairs of nearly Oat planes, which
are parallel to the surfaces of the cube. (Isosurfaces
for negative values of co look qualitatively similar but
with opposite planes closer to each other. ) The phonon
dispersions as given in Fig. 1 cannot be directly compared
with experiment, in part because there are little data for
the cubic phase. In addition, all experimentally observed
vibrational excitations have positive frequency, of course,
as a result of either anharmonic stabilization or because of
static or quasistatic disorder. These issues are discussed
further below.

The instability can be traced primarily to particular
elements of the dynamical matrix involving Nb atom
displacements along the (100) directions. Figure 3 depicts
a diagonal element of the dynamical matrix, D«(Nb),
in the form of isosurfaces in the BZ. The k, direction

FIG. 2. Zero-frequency isosurface of the lowest unstable
phonon branch over the BZ. The mode is unstable in the region
between the nearly Oat surfaces. I is located at the center
of the cube.

FIG. 3. Isosurfaces of the dynamical matrix element D,.(Nb)
over the BZ. The central pair of surfaces, D, , (Nb) = 0,
separates the unstable (between the two surfaces) and stable
regions. The other pair of surfaces is for a positive value
(1.1 X 10' cm 2).

is oriented vertically in this figure. The first pair of
surfaces (with sheets near the top and bottom of the figure
and displaying a sharp cusp) are for a positive (stable)
value of this matrix element. (The cusps result from
the dipole-dipole interaction which makes the dynamical
matrix nonanalytic near the zone center. ) The other,
Ilatter sheets are D„(Nb)= 0 isosurfaces that sandwich
a region where the matrix element is negative, i.e., where
the z displacement of Nb atoms is unstable. The near two
dimensionality of the instability is thus also revealed in
these isosurfaces. Since the Nb atom displacements are
along the z direction, this figure clearly shows that only
nearly transverse displacements are unstable.

We now consider the implication of the above results
for the unstable modes, which can be summarized briefly
as follows: (1) there exist unstable modes in and near
the k, = 0 (and equivalent) planes with the polarizations
perpendicular to the planes, (2) the modes show little
dispersion in the planes, whereas they stabilize rapidly
away from the planes (nearly two-dimensional behavior),
and (3) the instability is largely inherent in the subsystem
of Nb atoms in the background of fixed K and 0 atoms.
Since the unstable modes are not very dispersive in the
(100) planes, any linear combination of these modes will
also be comparably unstable. A linear combination within
one of the planar slablike regions in Fig. 2 can thus
yield a localized chain that is unstable. For example, a
planar average over the k, = 0 plane would yield a single
infinite chain oriented along the [001] direction of Nb
atoms coherently displaced by the same amount along the
chain direction. Although chains of infinite length are the
most unstable, finite-length chains can also be unstable.
From the thickness of the slab region that contains the
instability (Fig. 2), we estimate the length of the shortest
chains to be approximately 5a = 20 A. Such chains are
then the basic unit of instability; a smaller unit, such as a
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single Nb atom, would not be unstable, as least for small
displacements.

The linear response results presented here include only
the harmonic terms of the Born-Oppenheimer potential
expanded about the ideal cubic structure. The character
of the ferroelectric phase transition depends crucially on
the anharmonic terms, however. Specifically, the depth of
the Born-Oppenheimer potential wells associated with the
chain instability discussed above is determined by anhar-
monicity. In principle, the well depths associated with the
chain instability could be computed in a supercell calcula-
tion, but this is difficult because it requires using large su-
percells containing many formula units. In any case, such
potential wells are likely to be of the same order of mag-
nitude as that for the zone-center displacements. Unfortu-
nately, calculations for the zone-center modes [8,9] found
the well depths to be very sensitive to the volume at which
the calculation was performed, with changes as small as
a 1% contraction of the lattice parameter eliminating the
well depth completely. Since the accuracy of the LDA
for lattice parameters is approximately in this range, there
is considerable uncertainty regarding the magnitude of
the well depths. We can, however, consider the implica-
tions of our results in two limiting cases for the unknown
well depths. If the well depths are shallow, on the scale
ksT, and/or the zero-point energy of the Nb atoms, then
it is likely that the unstable modes in Fig. 1 are anhar-
monically stabilized, with atoms vibrating at renormalized
positive frequencies. This is the conventional soft-mode
picture. Experimental observations of the soft mode and
its temperature dependence are in qualitative agreement
with the anisotropic dispersion in our calculation. The
best available experimental results on the temperature de-
pendence of phonon dispersion in the cubic phase appear
to be for KTaOq [19,20], which is an incipient ferroelec-
tric and is devoid of the strong damping that is present in
KNb03 and BaTi03. Figure 2 of Ref. [20] clearly shows
that temperature dependence of the TO mode is large only
for wave vectors near the zone center along [111]. This
is not the case along [100] and [110]: Although the ob-
served soft TO mode does not show much temperature
dependence near the zone boundary, there is significant
temperature dependence in other modes, particularly, the
observed TA mode. This behavior can possibly be inter-
preted as resulting from the mixing of the TO and TA
modes as a result of anharmonic renormalization.

The order-disorder model cannot be excluded by the
results of the present work, however. If the potential wells
are deep, the Nb atoms would have a strong tendency
to stay close to the bottoms of the potential wells rather
than oscillating about its ideal position, even in the high-
temperature phases. The ferroelectric phase transitions
would then be of the order-disorder type. In this case,
the chain-structure instability deduced from our calculated
phonon dispersion can be seen to be consistent with the
eight-site model proposed by Comes, Lambert, and Guinier

[2]. For instance, their orthorhombic structure corresponds
to chains oriented along [001]displaced either in the +z or
—q direction, but with superimposed chains oriented along
[100] ([010])all having the same displacement in the +x
(+y) direction, resulting in an average polarization along
the [110]direction.

In summary, a first-principles calculation of the lattice
dynamics of KNb03 reveals structural instabilities with
pronounced two-dimensional character in the Brillouin
zone, corresponding to chains of displaced Nb atoms
oriented along the (100) directions. It seems likely
that the dynamics of the phase transitions will involve
fluctuations of such chains, although the full implications
of this unusual instability on the structure of the high-
temperature phases and the character of the ferroelectric
phase transitions remain to be explored.
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