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Universal Fluctuations of Chem Integers
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Chem integers describing quantized transport change (typically by ~1) when the energy levels or
bands with which they are associated become degenerate. We give a statistical treatment of these
degeneracies and the consequent fluctuations of the Chem integers. The density of degeneracies is
calculated exactly for a parametrization of the Gaussian unitary ensemble of matrices, and we present
numerical results indicating that the "gas" of degeneracies has a "charge neutrality" property. The
results apply to a broad class of complex systems after rescaling the parameter space.

PACS numbers: 73.40.Hm, 03.65.Bz, 05.45.+b, 05.60+w

The Chem integer is a topological invariant which can
characterize quantized transport without dissipation. It
occurs in the analysis of the quantized Hall effect for
electrons in a crystal lattice without disorder [1], and
in models for transport with a time dependent periodic
potential [2]. It also arises in more general models for
quantized conductance [3], in which the potential need
not be periodic. In all of these systems the Hamiltonian
can be represented by a Hermitian operator which is a
periodic function of two parameters, either Bloch wave
vectors or magnetic fIuxes threaded through holes in the
sample; we denote these parameters by X& and X2, and
assume that they are scaled so that both periods are
2~. There is a Chem integer N, associated with each
eigenvalue E„of the operator. In some systems the
Chem integers may be large and impossible to calculate
analytically. An example is illustrated in Fig. 1; the
system is a chaotic quantum billiard pierced by three
magnetic Iluxes, Fix;/e, i = 1, 2, 3. Chem integers are
associated with each energy level, describing quantized
transfer of charge around the second Aux in response to
increasing the first Aux by one quantum. This Letter is the
first of a pair of publications which characterize the Chem
integers statistically, by considering the effect of varying a
third parameter X3. It is not essential that the Hamiltonian
be periodic in X3, this parameter could describe a change
in the shape of the boundary or an externally applied
electric field instead of a flux.

Pairs of eigenvalues typically degenerate at isolated
points in the space of the three parameters (Xt, X2 X3).
The Chem integers generically change by ~1 at values
of X3 for which there is a degeneracy [4]; a sign can be
attached to each degeneracy, positive if the Chem num-
ber of the lower degenerating level increases when X3 in-
creases past the point of degeneracy, negative otherwise.
Reference [5] lists some earlier papers which have inves-
tigated the changes of Chem numbers at degeneracies. If
the positions and signs of degeneracies were randomly
distributed in both parameter space and over energy level
labels, the Chem integers would perform a random walk

Here 23 is the density of degeneracies in parameter
space between a given level and one of its neighbors,
A. = 4' is the area of the (Xt t X2) torus, and g(AX3) is a
function which contains information about the correlations
between positions of degeneracies: If they were randomly
distributed, we would have ~ = 1.

There is very strong evidence that random matrix ensem-
bles provide a good description of complex systems with-
out symmetries or constants of motion: Examples include
many-body systems such as nuclei [6], and systems with
few degrees of freedom but with chaotic classical dynam-
ics [7], such as our billiard example. The agreement with
random matrix theory is strongest for statistics involving
energy levels in a small range; statistics of degeneracies
provide a good example. In order to calculate the density
of degeneracies in parameter space we require a parameter
dependent random matrix model. A very natural model
for our purposes is the following [8]:

3

H(X) = PcosX;H2; t + sinX;H2;, (2)
i=]

in which H; are six independent realizations of the Gauss-
ian unitary ensemble (GUE). This model has several con-
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FIG. 1. Our results model dissipationless charge transport in
a chaotic quantum billiard pierced by three Auxes.

as X3 is varied. We will therefore use the following re-
lation to characterize the change in the Chem integer of
the nth level, AN„caused by a change AX3 of the third
parameter:
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venient features: Its statistical properties are homoge-
neous in the parameter space and dH/dX is independent
of H, while both are drawn from Gaussian unitary ensem-
bles. Also, the unitary invariance property implies that the
statistics of dH/dX are unchanged when we transform to
the eigenbasis of H. The real and imaginary parts of H;
are symmetric and antisymmetric matrices with indepen-
dently Gaussian distributed elements; their variances are

((ReH;, ) ) = 1 + 6;, ((ImH;, ) ) = 1 —6;, .

The statistical properties of (2) are expected to be the
same as those of a typical quantum system under an
appropriate transformation of the parameter space and
the level density [8,9]. The sensitivity of a system to
a perturbation parameter X; is conveniently described in
terms of statistics of the matrix elements of BH/RX;
in the basis formed by the eigenstates ~@„) of H: We
will use the notation (BH/BX;), = (@„,~BH/BX;~P„) for
these matrix elements. They will be characterized by
correlation coefficients for matrix elements between states
close to a given energy E:

(4)

and we will use the symbo1 C to denote the 3 X 3 matrix
with coefficients C;, . A precise definition of the average
over the matrix elements denoted by the angle brackets,
and its relationship to classical correlation functions, is
discussed in [10]. In the case of our parametrized GUE
model, these correlation coefficients are C,'j = 26;j: this
follows from Eqs. (2) and (3) and the invariance of
the ensemble under unitary transformations. A linear
transformation of the parameter space can be used to
reduce the matrix C to the diagonal form C' = 2I;
the statistics of the degeneracies are then expected to
appear (locally) the same as those of the GUE system.
Correlation functions of matrix elements such as (4)
contain information about both the Ohmic or dissipative
conductances of our billiard system and the mean value
of the Chem integers; we will discuss these issues in our
later paper.

First we will calculate the density of degeneracies. The
approach is to select an arbitrary point X, and calcu-
late the distance R to the nearest degeneracy between
levels n and n + 1, using degenerate perturbation the-
ory (this approximation is only accurate if R is small).
We use the resulting expression to calculate the proba-
bility that a degeneracy exists at some small distance R
from our randomly chosen point. This probability must
be P[R]dR = 4vrR~J3 dR, where 23 is the mean density
of degeneracies between the two levels; having calculated
P[R], we can deduce 23. A similar approach has previ-
ously been applied to the simpler case of the Gaussian
orthogonal ensemble [11).

According to two-state degenerate perturbation theory,
the degeneracy occurs when a discrirninant vanishes,
at a displacement 6X from our reference point. The
components 6X; of this displacement are given by the
following three linear equations:

3

gB;H, BX; = —kent, , (5)
i=1

J = 1, 2, 3,

where 5 = E,+1 —En, and

BH

~Xi n+ 1,n+ 1

8;H =R 8;H3 = Im

(all evaluated at X). The distance from the reference
point to the degeneracy R =

~
BX~ is proportional to

We write R = 5f where

f = w~+w2+w3/w,2 2 2

3

ijk t-) i H] t3 jH2 6kH3
i,j,k=1

3

Wn = Rij B&H26jH3,
i,j =1
i j Wn

and e;j is the Levi-Civita symbol. Since 6 depends on
the matrix elements of the Hamiltonian and f on the
matrix elements of its derivatives, these quantities are
statistically independent in our model ~ The probability
P[R] that the nearest degeneracy exists at a small distance
R can then be written

df d5 P[f]P[6]6(R —f6), (8)

where P[f] is the probability distribution for f, and P[h]
is the distribution of neighboring energy level separations.
When R is small, the Dirac delta function only supports
small values of 6, the probability distribution of which
is well known [12]: P[A]dh = 37r p~h dA, where p is
the density of states. This gives

P[R]= 3~7r p (f )R (9)

23 = —~~p' det(C) = —~up'o-',
3 3

After a lengthy calculation, the essentials of which we will
explain in our subsequent paper, we find (f ') = 8/8/7r.

Equating (9) with 4~R223dR then gives the density
of degeneracies directly. For a general system, it is
necessary to scale the density of degeneracies by the
Jacobian of the coordinate transformation which reduces
the correlation matrix C to the diagonal form C' = 21 of
the GUE model: The density of degeneracies is therefore
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where the second equality defines o., which is a mea-
sure of the typical magnitude of the matrix elements
(BH/BX;)„[for our GUE model, it follows from (2), (3),
and (4) that o. = ~2). We tested this result by counting
the total number of degeneracies X, for all energy levels,
in the (2')3 parameter space volume of our GUE model.
Using the Wigner semicircle law [12] for the density of
states, (10) implies that X = 512M'~~/135$3vr, where M
is the dimension of the GUE matrices; this prediction is
compared with numerical experiments in Table I.

We now consider how to calculate the function g
appearing in Eq. (1). Consider the effect of a change
in the third parameter AX3 on the Chem integers defined
on the (Xt, X2) torus. The Chem integer of the nth level
changes by ~1 at degeneracies, depending on the sign
of the degeneracy and on whether the degeneracy is with
the level above or below: The total change in the Chem
integer is AN„= 3V," —3V„—3V„ t + 3V„:&, where
3V„' is the number of degeneracies of sign s occurring
between levels n and n + 1 in the volume V(b, X3) swept

out as X3 is varied. The 3V," can be obtained by
integrating a density of degeneracies D„'(X):

dX D,"(X),
v{2 x3)

D;(X) = g 6(X —X, (n, s)) .

Here X, (n, s) are the positions of the degeneracies be-
tween levels n and n + 1 of sign s. The random func-
tion D„'(X) can be characterized by its mean value and
correlation function. We will assume that the density of
states is slowly varying on the scale of the mean level
separation, implying that the dependence of these statis-
tics on energy can be neglected in the following argu-
ments. Also, because s depends on the orientation of the
parameter space, which is arbitrary in our GUE model,
there is symmetry with respect to the signs. We therefore
write (D„'(X)) = 23/2, where D is the mean density irre-
spective of sign, and define a set of correlation functions

!

C„' '„I(X) as follows:

(D„'(X)D„'I(X')) =
2 23 B„„i6„6(X —X') + C„' ', (X —X').

Using considerations of homogeneity to equate terms, we have

(AN„ ) = 0, (AN„') = 4((3V„)') —4(3V„3V„)—4(3V„+3K„,) + 4(3V„"3V„,).
Using the correlation functions defined in (12), we find

(13)

(hN„) = 2ADAX 3+ 4
(AX3) (sx, )

d V'[Co+(X —X') —C, (X —X') —C,'(X —X') + C;(X —X')], (14)

which can be written in the form of Eq. (1).
We now discuss the limiting forms of the function

X(AX3). In the following considerations we will ignore
the fact that (2) is periodic in X3, and assume that the
correlation functions C„"-(X) decay to zero as ~X~ ~ ~.
In the limit b, X3 ~ 0, the double integral in (14) makes a
contribution which is O(AX3), implying that

with both (14) and the linear approximation (15). If
the correlation functions decay sufficiently rapidly, (14)

800 ~

lim g(AX3) = 1,
Ax3—0

which is equivalent to regarding the degeneracies as
uncorrelated. In Fig. 2 we display numerical results
showing the diffusion of the Chem integers, compared

(AiV„)

TABLE I. Total numbers of degeneracies present in the 8~'
volume of parameter space. The data are for one realization
of the GUE model, with different values of the matrix dimen-
sion M.
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FIG. 2. Diffusion of Chem integers for small AX3. The
straight line is for uncorrelated degeneracies (g = l ), the
smooth curve was calculated from (14), using numerically
determined correlation functions, and the third line is (EN')
averaged over many realizations. The data are for levels close
to the center of the spectrum of 40 X 40 GUE matrices.
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implies that (AN2) grows linearly as XXs ~ ~, unless 3.00

23 + 2 dV[Cp+(X) —Cp (X) —C, (X) + C, (X)] = 0

(16)

(here the integral is over all space). If the sum rule (16)
is satisfied, we expect that (AN2) approaches a constant
as AX3 increases. The distribution of degeneracies can be
thought of as a gas of particles of different types labeled
by integers n and charges s = ~1. We will present
numerical evidence that (16) holds, implying that "charge
fluctuations" in the "gas" of degeneracies are perfectly
screened.

After transforming the parameter space to reduce the
correlation matrix C to a multiple of the identity, the corre-
lation functions defined in (12) are ' universal" functions of
the dimensionless variable x = o.p~X~. It follows that the
function X(AX3) can be written in terms of a universal scal-
ing function f(x): X(AX3) = f(pcrhX3) Equati. on (15)
implies that f(0) = 1, and (16) implies that X(AX3)AX3 ap-
proaches a constant as AXs ~ ~, or f(x)x p, as x
where P, is a universal constant. Also, if (ENz) satu-
rates when po-AX3 » 1, we can relate the variance of
the Chem integers to the saturation value of this statistic:
var(N„) =

2 (AN„)„,. Our hypothesis (16) therefore im-

plies that

log ipS

1.60
1,10

log ip

1.80

FIG. 3. Numerical evidence for (18): The gradient of the line
1s 2.

We acknowledge useful discussions with Dr. J. E.
Avron and Dr. E.J. Austin who gave valuable assistance
with the calculation of (f 3). We gratefully acknowledge
support from the EPSRC (U. K.) and CNRS (France), and
wish to thank Professor Jean Bellissard in Toulouse for
his hospitality, where most of this work was carried out.

var(N„) =
z (hN„)„, = =

3 ~~pAp tT .2 2

(17)

We computed the Chem integers for our parametrized
GUE model at X3 = 0, and extended the results through
the parameter space by identifying the degeneracies and
their signs. Our results, for matrices of dimension M up
to 50, did not give good enough statistics to test (16) or
(17) directly; instead we calculated the statistic

S = g(N„) =
n=1

dE p (E) =
s Jvrp, M

(18)

for our parametrized GUE model (we used the "semicircle
law" [12] for the density of states at large M to estimate
the integral). We present a plot of S against M in Fig. 3,
which confirms the prediction that S —M2, and gives the
estimate p, = 0.2.

To summarize, we have calculated the density of degen-
eracies exactly, and we have presented numerical results
indicating that charge fluctuations are perfectly screened;
we used these results to characterize the fluctuations of the
Chem integers. In our subsequent paper, we will describe
a variety of analytical results on sums of Chem integers,
which are relevant to systems modeled by independent
fermions.

*Permanent address: Department of Physics and Applied
Physics, John Anderson Building, University of
Strathclyde, Glasgow, G4 ONG, Scotland.

[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and
M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

[2] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[3] D. J. Thouless and Q. Niu, Phys. Rev B. 35, 2188 (1987);

J.E. Avron and R. Seiler, Phys. Rev. Lett. 54, 259 (1985);
J.E. Avron, A. Raveh, and B. Zur, Rev. Mod. Phys. 60,
873 (1988); J.E. Avron and L. Sadun, Ann. Phys. (N.Y.)
206, 440 (1991).

[4] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
[5] Z. Tesanovic, F. Axel, and B.I. Halperin, Phys. Rev. B

39, 8525 (1989); P. Leboeuf, J. Kurchan, M. Feingold,
and D. P. Arovas, Phys. Rev. Lett. 65, 3076 (1990);
F. Faure, J. Phys. A 27, 7519 (1994).

[6] Statistical Theories of Spectra: Fluctuations, edited by
C. E. Porter (Academic, New York, 1965).

[7] M. C. Gutzwiller, Chaos in Classical and Quantum
Mechanincs (Springer, New York, 1990).

[8] E.J. Austin and M. Wilkinson, Nonlinearity 5, 1137
(1992).

[9] M. Wilkinson, J. Phys. A 22, 2795 (1989); B.D. Simons
and B.L. Altshuler, Phys. Rev. Lett. 70, 4063 (1993).

[10] M. Wilkinson, J. Phys. A 20, 2415 (1987).
[11] M. Wilkinson and E.J. Austin, Phys. Rev. A 47, 2601

(1993).
[12] M. L. Mehta, Random Matrices (Academic, New York,

1991), 2nd ed.

4058


