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Via a novel interference experiment, which measures magnitude and phase of the transmission
coefficient through a quantum dot in the Coulomb regime, we prove directly, for the first time, that

transport through the dot has a coherent component.

We find the same phase of the transmission

coefficient at successive Coulomb peaks, each representing a different number of electrons in the dot;
however, as we scan through a single Coulomb peak we find an abrupt phase change of 7. The
observed behavior of the phase cannot be understood in the single particle framework.

PACS numbers: 73.20.Dx, 71.45.—d, 72.80.Ey, 73.40.Gk

Almost 40 years ago Landauer showed [1] that current
transport can be considered as a scattering experiment.
In the case of a single plane wave impinging on a sys-
tem the conductance is simply proportional to the abso-
lute value squared of the transmission coefficient of the
system. It is therefore evident that the relative phase be-
tween incoming and outgoing electronic waves cannot be
measured in a simple transport experiment. In coherent
processes, where the phase is deterministic, the phase of
the transmission coefficient might contain complementary
information to the conductance. Of particular interest are
the coherency and the transmission phase of a resonant
tunneling (RT) process through a quasibound state, be it
in a resonant tunneling diode in 3D and 2D [2] or in a
quantum dot (QD) in OD [3]. The phase is expected to
change by 7 as the energy of the impinging electron is
being scanned through a resonant level [4]. Evidently,
the conductance of these structures cannot reveal such
phase information; moreover, as was shown theoretically
[5], conductance measurements cannot even distinguish
between sequential (where carriers scatter in the well and
their phase is randomized) and coherent resonant tunnel-
ing. Hence, contrary to many unsubstantiated claims, the
nature of transport in RT devices still remains ambiguous.

In general, coherency or dephasing, but not the actual
phase of the transmission coefficient, can be studied via
indirect interference experiments such as weak localiza-
tion and conductance fluctuations. The phase factor, in
turn, can be obtained by exploiting the Aharonov-Bohm
(AB) effect or via a newly developed double slit interfer-
ence experiment [6,7]; both directly probe the coherency
and the phase of the transmission. Here we utilize a
novel interference device that makes use of the AB ef-
fect for studying the magnitude and phase of transmis-
sion through a QD in the Coulomb blockade regime—an
a priori RT device.

The QD can be viewed as a large atom [8], a few hun-
dred nm in size, containing up to a few hundred elec-
trons. Because of its small capacitance the addition of
an extra electron requires a relatively large potential en-
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ergy, called charging energy, leading to an energy gap
(the so-called Coulomb blockade regime). Currently, most
theories describing transport through a QD in the Coulomb
regime do not predict the phase behavior of the transmitted
wave through the dot [3,9]. Experimentally, aside from a
couple of recent works studying dephasing in large chaotic
dots [10,11], no direct studies of the coherency, let along
the phase, of QD’s had been published. We tackle this
problem by constructing a modified AB interference experi-
ment, utilizing a bare AB ring with a QD embedded within
one of the ring’s arms (see Fig. 1) [12]. In general, an
AB ring’s conductance is known to oscillate when a vari-
able magnetic field penetrates its inner core, with a period-
icity of a flux quantum A#/e. One would thus expect these
oscillations to persist also in our modified AB ring if trans-
port through the QD has a coherent component. Perform-
ing such an experiment we find that (a) transport through
the dot contains a coherent component; (b) the phase
of the dot’s transmission coefficient changes abruptly by
~qr at some energy in the resonance peak; and (c) the
phase is identical both qualitatively and in magnitude in all
resonances.

Our experiments were performed with a selectively
doped GaAs-AlGaAs heterostructure supporting a two-
dimensional electron gas (2DEG) residing some 70 nm
from the surface. The 4.2 K electron concentration and
mobility are 2.2 X 10! cm 2 (Er = 8 meV) and 1.5 X
10° cm?/V sec, respectively, leading to an elastic mean
free path of order 10 um. The modified AB ring was
formed by depositing submicron metal gates on the sur-
face of the heterostructure and subsequently biasing them
negatively in order to deplete the electrons underneath.
Figure 1(a) describes the schematics of the circuit, and
Fig. 1(b) is a SEM micrograph of the surface. Note that
a special lithographic process, invoking a metallic air
bridge, had been developed in order to contact the cen-
ter metal gate (that depletes the ring’s center). The QD
(0.4 pm wide and 0.5 wm long) is inserted in the left side
arm, and its area, and hence the number of electrons in it,
is controlled by biasing the plunger gate P. The coupling
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FIG. 1. (a) A modified
circuit. The shaded regions are
metallic gates. (b) A SEM micrograph of the structure. The
white regions are the metal gates. The central metallic island

is biased via an air bridge (B) extending to the right.

schematic description of the
Aharonov-Bohm ring’s

of the QD to the ring’s arm is controlled by the two gates
surrounding the plunger gate, making the QD’s resistance
considerably larger than the resistance of each arm. The
AB ring, in turn, is coupled to the large 2DEG reservoir
via two point contacts with resistance larger than that of
the arms. This configuration enables a continuous varia-
tion of the QD’s resistance without affecting the two-
terminal resistance of the modified ring. Since each
of the ring’s arms usually contains a few 1D channels
and the estimated thermal smearing length is comparable
to the ring’s size, the AB interference contrast of the bare
ring (without an embedded QD) is typically around 10%
at 100 mK.

We first study the behavior of the conductance of
the QD and its effect on the coherency of the transport
through the dot. Before describing the experimental
results it might be instructive to consider a simple model
of noninteracting electrons confined within the QD. The
energy spectrum of a QD can be viewed as a ladder
of single particle eigenstates, each being broadened due
to tunneling into (and out of) the QD and by inelastic
scattering. As electrons are being added to (or depleted
from) the QD this ladder sweeps down (or up) through
the Fermi level. If k37 < I', I' being the width of a
resonant level, the conductance of the dot as a function
of Vp has the form of a sequence of peaks, each having a
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Lorentzian line shape [13] (Breit-Wigner type resonance
[14]), representing the absolute value squared of the
transmission coefficient of the QD. When kg7 > T, the
line shape of each conductance peak takes the form
of the derivative of the Fermi-Dirac distribution (with
width ~4kzT) [15]. Since our QD has a very small
capacitance (C = 160 aF), each additional electron that
occupies the QD charges the dot and changes its energy
by Ec = €2/2C = 0.5 meV. Thus an additional energy
E¢ is needed, on top of the single particle energy spacing,
in order to add a single electron to the QD.

What is the nature of transport through the QD? Our
QD contains about 200 electrons, and its resistance is be-
ing varied in the range of 10° to 10® Q while the resistance
of each arm of the ring is ~5 k(). Measurements are done
at an electron temperature of 80 mK, estimated from the
peaks’ width, and with a 10 'V ac excitation voltage ap-
plied across the ring. The QD was set to conduct by tuning
the plunger gate voltage (V, = V,, in Fig. 2) with the to-
tal dot’s resistance controlled by adjusting both point con-
tacts of the dot (trying to keep the dot symmetric). An AB
flux was then applied, and the measured current oscilla-
tions are plotted in Fig. 2 (on top of a subtracted out large
background due to the right arm) in the same scale as that
of the Coulomb peak. The period of the oscillating signal
is =20 G, in very good agreement with the expected AB
period, providing a direct indication that transport has a
coherent component. As the resistance of the dot is being
changed the oscillations contrast, defined as peak to peak
over the average dot’s current, does not vary much and
hovers in the range 0.2 to 0.4 (inset of Fig. 2).
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FIG. 2. One of the ring’s current (conductance) peaks as a

function of the plunger gate voltage. At the top left the current
is plotted as a function of magnetic field (the magnetic field
increases to the left) at V, =V, showing Aharonov-Bohm
oscillations. In the inset the oscillation contrast (peak-to-peak
versus average current through the dot) as a function of the
dot’s resistance is shown. The large current of the right arm is
subtracted.
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Intuitively, a QD strongly coupled to the ring’s arm will
dephase insignificantly. As the coupling strength is be-
ing reduced (by pinching the two point contacts of the
dot) the classical dwell time of the electrons in the QD
becomes longer, possibly eventually allowing dephasing
to take place. In order to consider the interference ex-
periment more quantitatively it is convenient to work in
the framework presented by Biittiker [16] for the prob-
lem of resonant tunneling. We model the QD as having
single particle resonant states, and for a fully coherent
transport the transmission amplitude can be described by
the Breit-Wigner formula tp(E) = I',/(E + iT,), where
the homogeneous broadening of the resonant level at £ =
0 is I', and the tunneling rates in and out of the dot are
assumed equal (named the symmetric case). For a single
conducting channel in the right arm with transmission g
we find the peak current through the ring, for the resonance
located at the Fermi energy, to depend on flux via
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Assuming kgT > T',, we find
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leading to an oscillating conductance as a function of
¢ with an average conductance of the modified ring
gr + gp with gp = (e*(wrT./h)/kgT) being the average
conductance of the dot. This simple model predicts that
the interference contrast is independent of I', and is given
by 4tg. This result is valid in the general case where the
peak transmission is independent of I', (when the ratio
between in and out dot’s resistances is constant). Note
that changing the dot’s in and out resistances in a manner
different than specified above will affect the contrast.
If, however, the transport has an incoherent component,
with an inelastic width I';, it is intuitively expected that
as long as I'; < I', the contrast will be independent of
I', as above. However, when I'; > I', the contrast will
diminish upon decreasing the coupling of the dot to the
arm. We use the coherent expression to estimate the
width of the resonance level [17]. For dot resistance of
1 MQ and kg7 = 100 mK we find I', = 0.2 peV and a
corresponding dwell time 7p = 3.2 ns. As seen in Fig. 2
coherency is preserved even at this long dwell time.
After showing that transport is (at least) partly coherent
we move on to study the dependence of the accumulated
phase through the QD on its occupation. How should the
phase behave on the basis of the single particle model
discussed above? Considering only the coherent part
and kgT < T',, the phase of the transmission coefficient
deduced from the Breit-Wigner formula is expected to be
almost constant away from the resonance and to undergo
a smooth change of 7r as the energy scans a resonant peak
[4]. Similarly, for kgT > T',, it can be easily shown that
the phase is expected to change smoothly over a scale
of kgT rather than I',. An exact solution of a simple
1D RT model suggests that the phase of each resonance

(or every other one when spin degeneracy is lifted) is
out of phase with its predecessor. However, this might
not be necessarily the case in other dimensions where
it is not even clear theoretically whether a systematic
behavior of the phase of the transmission coefficient with
the number of electrons is expected. Note that since
the number of electrons in the QD is around 200, the
bare level average spacing is =~Er/200 = 40 ueV (also
estimated from the conductance of the dot as function of
Vp at finite applied dc Vps), which is evidently larger than
kgT (=9 pueV). This suggests that each Coulomb peak
results from tunneling through a single resonant level.
Experimentally we follow the phase evolution of the
transmission coefficient through the QD by comparing AB
interference patterns measured along a single Coulomb
peak as well as at different Coulomb peaks. Figure 3(b)
shows the AB oscillations for three typical successive
peaks [shown in Fig. 3(a)], chosen out of a series of 12
measured successive peaks, with all oscillations taken at
similar locations on the peaks (denoted by A, B, and C).
It is clearly seen that the oscillations have the same phase
at the three peaks, suggesting the same absolute phase of
the transmission coefficient at each peak. However, the
behavior of the phase along a single Coulomb peak is quite
striking. Figure 4(a) presents the expected line shapes for
kgT << T, for kgT > T', and that of a measured Coulomb
peak. Four different interference patterns, taken at the
specified points on the Coulomb peak shown in Fig. 4(a),
are represented in Fig. 4(b). The patterns indeed show a
7r phase change which takes place rather abruptly between
points 2 and 3. This change can be seen more clearly in
Fig. 4(c) where we summarize the phase behavior along
a single Coulomb peak (for two different peaks). Note
that the phase change occurs on a scale of =kgT /10, in
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FIG. 3. (a) A series of Coulomb peaks and (b) the corre-
sponding interference current oscillations taken at the marked
points A, B, and C in successive peaks of the ring’s current.
All oscillations are seen to be in phase. The large current of
the right arm is subtracted.
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FIG. 4. The evolution of the phase along one conductance
peak. (a) Level broadening, I', at T = 0 (broken line) and for
kgT > I' (dotted line), and the experimentally measured peak
(shifted up solid line). (b) A series of interference patterns
taken at the specified points on a peak. Note the phase jump
between patterns 2 and 3. (c) Summary of the experimentally
measured phases within two peaks (o and A; the broken lines
are only guides to the eye). The expected behavior of the phase
in a 1D resonant tunneling model is shown by the solid line.

direct contradiction with the expected change on the scale
of the temperature. It is important to mention that the
conductance in the region where the phase change occurs
is accompanied by severe noise in the measured ring’s
current. It is not clear at the moment if that noise results
from the AB interference in the presence of the phase
switching in the dot or a conductance fluctuation of the
QD itself.

The coherent properties and consequently the phase be-
havior of the quantum dot, which are first being measured
here, provide new insight into the state of current transport
in the dot with its full complexity. Coherent transport is
observed even though the estimated dwell time in the dot
is about 10 ns. The measured phase behavior of the co-
herent component is striking. It deviates altogether from
the noninteracting, single particle, model of interference
between an amplitude transmitted through the dot and a
reference amplitude. Though the identical phases of suc-
cessive conductance (or Coulomb) peaks belong effec-
tively to different dots (each with a different number of
electrons) and thus not obvious (see also the argument of
dimensionality before), the abrupt 7 change in phase on a
scale much smaller than k7, as the occupation of the dot
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changes, is totally unexpected. It might be associated with
a coupling between the dot and the Aharonov-Bohm ring,
affecting, via magnetic flux penetration, the eigenstates of
the whole system (ring plus dot) and thereby the transmis-
sion through it [18].
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FIG. 1. (a) A schematic description of the modified
Aharonov-Bohm ring’s circuit. The shaded regions are
metallic gates. (b) A SEM micrograph of the structure. The
white regions are the metal gates. The central metallic island
is biased via an air bridge (B) extending to the right.



