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Phase Diagram of Correlated Electrons in a Lattice of Berry Phase Molecules
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A model for correlated electrons in a lattice with local additional spin-1 degrees of freedom inducing
constrained hopping is studied both in the low density limit and at quarter filling. We show that in both
1D and 2D two particles form a bound state even in the presence of a repulsive U ~ U, . A picture of a
dilute Bose gas, leading to off-diagonal long-range order (LRO) in 2D (quasi-LRO in 1D), is supported
by quantitative calculations in 1D which allow for a determination of the phase diagram.
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Recent work on models with correlated electronic hop-
ping, involving density-dependent hopping matrix ele-
ments, has pointed out that superconductivity can arise by
purely off-diagonal processes in spite of repulsive short-
range interactions [1].

Correlated electronic hopping arises also when ad-
ditional degrees of freedom participate in the "local
physics" at each site, inducing, for instance, occupation-
dependent constraints. One clear example of the latter
situation is realized in molecular crystals, where the addi-
tional degrees of freedom arise because of the coupling to
intramolecular phonons [2,3]. The basic physics is that,
under appropriate conditions, molecules with an odd num-
ber of electrons have an associated Berry phase and an
orbital degeneracy; due to a dynamical Jahn-Teller effect,
those with an even number have none [2]. The general
question is whether such mechanisms will also lead to su-
perconductivity even in the presence of repulsive diagonal
interactions.

The simplest model capturing some of the physics of
electronic hopping in the presence of additional local
degrees of freedom is a Hubbard-type model with an
extra spin 1 at each site [3]. The constraint is that the
allowed spin-1 states depend on the electron occupancy
[3]: An empty or doubly occupied site must have S' = 0,
whereas a site occupied by a single electron (either up
or down) has an additional twofold (orbital) degeneracy,
represented by 5' = ~1:

hopping term, conserves the constraint in Eq. (1), the
model is still highly nontrivial, even for U = 0.

In this paper we will present some results concerning
the few-particle problem, the low density region, and the
quarter-filling case, which shed light on the basic features
of the phase diagram of the model. We will show that in
both 1D and 2D the additional spin-1 degrees of freedom
lead to a two-electron bound state even in the presence
of a repulsive U ~ U, . Moreover, the model does not
show a tendency to phase separation and a picture of a
dilute Bose gas, leading to off-diagonal quasi-long-range
order (LRO) in 1D (genuine LRO in 2D) is supported at
small density by analytical calculations. At quarter filling,
a clear superconducting regime is found to survive up to a
positive U —t.

Consider the two-particle problem first. A state in the
two-particle Hilbert space with the total z component of
the spin M,'„= 0 (for both the electron spin and the spin-
1 states) can be written as ~W) = g„„[P+ (r, r')S„+S„+
t/t +(r, r')S, S„]ctc„1~0), where the vacuum ~0) is the
state without fermions and with 5,' = 0 at each site.
In writing ~%') we have taken into account the two
possibilities of associating a 5' = ~l spin state to the
up and down electrons: P+ is the amplitude for having
S' = +1 associated to the 't electron (and S' = —1 to
the i electron), while P + is the amplitude for the other
possible choice. The Schrodinger equation for ttt+ (r, r )
is easily shown to be

n, =0, 2 . 5'=0
y

n„= 1 Sz = ~1 (1)
FP+ (r, r') = —tg [P+ (r + a, r') + P+ (r, r'+ a)]

The Hamiltonian H is written as follows:

H = ——g g (ct c„+ H.c.) (S„S„+H.c.)2

+ U6„„if~ (r, r')

+ U nyf&yl, ~ (2)

where the S„-'s are spin-1 ladder operators at each site,
and the remaining notation is completely standard. It
is worth stressing that while H, and, in particular, the

where a denotes a nearest-neighbor vector (a = ~1 in
1D). A similar equation is obtained for tit +(r, r ) by just
exchanging P + and P+ everywhere. The last term in
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Eq. (3) is crucial to the whole story, and deserves a few
comments. When the two electrons are far enough in the
otherwise empty lattice, the Hamiltonian H simply allows
the hopping to a nearest-neighbor site of the "composite"
object formed by an electron and the associated spin-
1 state [first term in Eq. (3)]. Things are more subtle
when two electrons come to the same site r. In such
a case, from a doubly occupied site with 5,' = 0 one
can reach, upon hopping, two possible final states: either
each electron keeps its own spin-1 state or the spin-1
states associated to the two electrons are exchanged. It
is precisely this second possibility of exchanging spin-1
states that is responsible for the presence of P + in the
equation for P+ and vice versa [last term in Eq. (3)].

The Schrodinger equation is easily solved in momen-
tum space, where it reduces to a 2 X 2 matrix problem.
For total momentum P = 0, the set of solutions among
which the ground state is found satisfies the equation

1 1 2
E+ U

where F. is the energy eigenvalue and e& is the tight-
binding dispersion of the free-electron problem (ek =

2tg cos—k ). In the ordinary Hubbard case, the right
hand side of Eq. (4) would simply read 1/U [4]. A
graphical analysis of Eq. (4) readily shows that a bound
state solution is present even for U ) 0 up to U, = 40t
in D ~ 2. In D ~ 3 a finite attractive U is needed to
produce a bound state.

The bound state solution can be worked out analytically
in 1D. For general values of the total momentum P and for
U ( U,. = 4t cos(P/2), the ground state energy is given by

E = 4t cos(P/2) —(Z + 1)/(2Z ), (5)

with Zp = (—(U/4t) + [(U/4t) 3+c so( 2/P2)]'~ )/cos(P/
2), and the corresponding ground state wave function is

e
'

[e
—

I

— 'I (I/2)6, „]with K

lnzp. At larger values of U, no bound state is present
and the energy spectrum is continuous in the infinite
lattice. There is still, however, an antibound state. The
two-particle solution cannot be generalized to an arbitrary
number of particles by the Bethe ansatz because the
corresponding scattering matrix does not satisfy the Yang-
Baxter relations.

The form of the ground state wave function naturally
provides a picture of bound pairs approximately local-
ized on adjacent lattice sites, thereby forming dimers.
Remarkably, the rather strong attraction responsible for
this binding is generated by the kinetic term alone via
the presence of the additional degrees of freedom. The
critical value of the Hubbard repulsion U, = 4t is con-
siderably larger than the ground state binding energy at
U = 0: Eb = 4t(Zo —1) /(2Zo) = 0.618t, showing that
this kind of pairing mechanism is rather insensitive to
the presence of on-site Coulomb repulsion. This is ex-

plained by its "kinetic origin which delocalizes the pair
on neighboring sites. The same feature is also present
in 2D, where U,. = St: The enhancement is due to the
larger coordination of the 2D lattice which provides an
even more efficient delocalization of the electron pair.

This interpretation of the two-particle ground state in
terms of dimers leads to a simple picture, both in 1D
and 2D, of the low density region of the model (2),
a picture which we will explicitly verify in 1D: For
U ( U„at low densities, the system behaves as a
weakly interacting, dilute gas of dimers, which follow
boson statistics and may be thought of as bosons with
an extended core. In 1D, we can estimate the dimer
effective mass from our two-particle calculation, Eq. (5),
which at small momentum P gives Fp —Fo + t,ffP
with t, tf = t[3 + (U/4t)2] '~2. The effective mass has a
smooth dependence on U varying between ~3 at U = 0
and 2 at U = 4t. Dilute dimers are therefore rather
mobile and a superfluid ground state must be expected
at zero temperature. In 1D, of course, off-diagonal LRO
cannot occur and only a long-range power-law decay
of the dimer density matrix is possible, while in 2D
a genuine Bose condensate will form. In terms of the
original electrons this implies a standard strong coupling
BCS superconducting ground state with localized Cooper
pairs. A similar scenario has also been proposed in
the framework of the one-dimensional t-1 model, where
bound pairs are formed at low density [5] and 2 ( J/t (
2.95. In that case, however, the model is unstable to
phase separation, which, in fact, occurs massively at larger
values of J/t.

To check whether the superfluid dimer picture is correct
and that no phase separation occurs at low density, we
have carried out a numerical investigation of the four-
particle problem by exact diagonalization of the model
(2) in lattices with up to 24 sites. The results for the
ground state energy and for the density-density correlation
function at U = 0 are reported in Fig. 1. The four
electrons are sharply localized in two pairs placed at
the maximum separation. The origin of this repulsion
is purely kinetic and is also reproduced by the ground
state wave function of two hard-core bosons in 1D,
P(R) ~ ~sin(vrR/L)~. The scaling of the energy of four
electrons clearly shows that the limiting value is just twice
the pair energy Eo = 8t/~3 with 1/—L~ corrections.
Free "hard-core bosons" with the appropriate effective
dispersion t,« = t[3 + (U/4t)~] '~ give the asymptotic
result L (E —2Eo) 27r t,fq marked with a full circle
in Fig. 1, and clearly compatible with the data.

A further step in the quantitative characterization of the
low density region of the model can be made by using
standard field theoretical methods for 1D systems [6].
The analysis of the two- and four-particle problem shows
that for U ( U, a spin gap is present in the excitation
spectrum of the model while the charge (superfiuid)
degrees of freedom remain gapless, giving origin to the
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In fact, at fixed N, and L ~ ~, the predicted scaling
of the energy is E(N, L) = Neo + erN~/L2 —PN/L~ +
O(L 3). Analogously, the large L (i.e., low density) limit
of the charge velocity should scale as u~ = yN/L, where
n, P, and y are model-dependent constants. By means of
these asymptotic expressions together with Eq. (7), we get
the formal result for K~ = ~7 /24n. The central charge c
[11]of the model can be also expressed in terms of these
constants, c = 6P/~7. This will provide a consistency
check. At U ) U, = 4t, the two-particle analytical result
is sufficient to extract the values of the required constants,
which turn out to be independent of U: n = 7r /24,
P = zr /6, and y = ~. This gives c = 1, as expected
from the universality class of the model, and K~ = 1. In
order to extract the correct large I scaling of the energy
in the regime U ( U„ the four-particle numerical result is
required. By using the estimate of Fig. 1, the parameters
governing the asymptotic low density behavior become
cl 1 ff 'rr /192, P = t,rf rr /12, and y = t,fr7r /2, which
give c = 1 and K~ = 4 independent of U ( 4t.

The exponents which characterize the decay of the elec-
tronic correlation functions are obtained in terms of the
parameter K~ by bosonization under the assumption that
only the charge sector remains gapless [10]. In particu-
lar, the density response function at 2k+ decays as x
while the 4kF component behaves as x ~p. In the deriva-
tion of these power laws, we must recall that eight bosonic
fields contribute to the physical density operators, and this
reduces the exponents by a factor of 2, with respect to
the usual Hubbard model case where only four fields oc-
cur (right and left movers with two possible values of
the spin). At the Luther-Emery fixed point also the su-

perconductive correlations have power-law behavior. By
examining the corresponding operator, we get the asymp-
totic behavior of the s-wave superconductive correlation
as A, (x) —x ~ . At low densities and for U ( 4r we
have K~ = 4: The most relevant correlations are the su-
perconductive ones, decaying as I/vx. Remarkably, the

I/~x behavior is identical with that of a dilute hard-core
boson gas, as expected from the physical picture previ-
ously discussed. Instead, for U ) 4t and p 0, we have

K~ = 1: The correlation with the slowest decay is the
density response function at 2k&, with an inverse square
root behavior, implying a divergence in the CDW suscep-
tibility. Strictly at U = ~ the 2kF response function has
vanishing amplitude (as in the Hubbard model) and there-
fore the corresponding singularity is absent in the exact
solution previously discussed: We expect that, at finite U,
this additional feature may be detected.

We have also determined K~ numerically from
the charge velocity u~ and from the Drude peak
D = u~K~/(2') [6]. Figure 2 shows the results obtained
at quarter filling (p = 1/2). For U/t ( 1 the L
extrapolation clearly gives K~ ) 2, i.e., predominantly
superconducting correlations. On the contrary, for
U/r ) 1 we have K~ ( 2, i.e., predominant CDW corre-

lations. The crossover between the two regimes is found
to take place close to U = t at this density. Exactly
at half filling (p = 1) a transition is found at U, = 0
between a superconductor (U ( U,.) and a Mott insulator
fully gapped in both spin and charge sectors [7].

The physics of the model in one dimension is now
rather clear. A transition occurs at U, . (p) [with U, . (0) =
4t, U, (1/2) = t, and U, (1) = 0] between a superconduc-
tor (U ( U, ) and a sliding CDW conductor (p 4 1) or
Mott insulator (p = 1). The physics at small U, leading
to superconducting correlations, is rather robust and can
be generalized to 2D, where true LRO will occur at zero
temperature. On the other hand, the CDW state, perhaps
akin to a spin Peierls state, should get weaker and disap-
pear in higher dimensions. The large U spin gap is also,
probably, a 1D peculiarity.

By extrapolating these results, we can surmise that
a correlated hopping model such as Eq. (2) can be
expected to give rise to superconductivity in 3D. A
pairing mechanism based on correlated hopping is not
easily destroyed by a repulsive U, it is more effective
at low carrier density, and is apparently immune from
the polaron self-trapping, which depresses T,. in strongly
coupled electron-phonon systems. More work is now
being devoted to investigate the relevance of this type of
model to molecular superconductors such as organic 1D
metals, Chevrel phases, and metal fullerides.
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