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Density-Polarization Functional Theory of the Response of a Periodic Insulating Solid
to an Electric Field
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The response of an infinite, periodic, insulating solid to an infinitesimally small electric field is
investigated in the framework of density functional theory. We find that the applied perturbing
potential is not a unique functional of the periodic density change; it depends also on the change
in the macroscopic polarization. Moreover, the dependence of the exchange-correlation energy on
polarization induces an exchange-correlation electric field. These effects are exhibited for a model
semiconductor. We also show that the scissor-operator technique is an approximate way of bypassing
this polarization dependence.

PACS numbers: 71.10.+x, 77.22.Ej

Density functional theory (DFT) [1,2] has become the
standard method for first-principles calculations of the
properties of solids. Within the local density approxi-
mation (LDA) [2], the accuracy obtained for a wide set
of properties is of the order of a few percent [3]. No-
table exceptions to this gratifying picture are the cohesive
energy of solids, the energy gap of semiconductors, and
their dielectric susceptibility. The first of these failures is
attributed to the LDA [3], while the second comes from
a discontinuity in the DFT exchange-correlation potential
when an electron is added across the gap [4].

The third failure is striking in that it is not easy to
see whether it comes from the LDA approximation or
from some fundamental feature of DFT. At first sight,
the dielectric susceptibility, being the second derivative of
the ground state energy with respect to an applied electric
field, should be obtained exactly within DFT. Although
the corresponding potential change is linear in space, and
breaks the periodicity of the solid techniques were found
to bypass this problem [5,6]. Unfortunately, the LDA
results [5—7] are usually much larger (more than 10%)
than the experimental data. Dal Corso, Baroni, and Resta
[8] argued that any attempt to improve the LDA calculated
value should go in the direction of better approximations
to the true functional. The latter authors tried to compute
the dielectric response of Si in the generalized gradient
approximation (GGA) [8], but with limited success.

Earlier, Levine and Allan had proposed a simple
"LDA + scissor correction" approach to the dielectric
tensor [6], in which a constant shift b, is imposed on
the conduction bands with respect to the valence bands,
to reproduce the correct band gap. The dielectric tensor
in this approximation has been found to be within a few
percent of the experimental data for more than a dozen
semiconductors and insulators [6,7]. But, as emphasized
by Dal Corso, Baroni, and Resta, there was no immediate
justification within DFT of this successful procedure.

In recent work by Godby, Sham, and Schliiter [9], it
was shown that the exchange-correlation potential near

a semiconductor interface acquires a slow linear spatial
variation, related to the discontinuity 5 that occurs on
addition of an electron to the bulk semiconductor. This
variation corresponds to an ultranonlocal "vertex correc-
tion" in the Kohn-Sham formulation of the dielectric re-
sponse of the semiconductor, and depends crucially on
the electron density at the interface [10]. A connection
between the scissor-operator correction and this linear
behavior of the exchange-correlation potential was also
pointed out.

In this paper we reexamine the response of a periodic
solid to an electric field within DFT, and observe that
the original proof of Hohenberg and Kohn [1] does not
apply to this case. We then prove the equivalent of the
Hohenberg and Kohn theorem in perturbation theory, and
show that knowledge of both the change in periodic density
and the change in polarization is needed to recover the
change of periodic potential and change of electric field
that induced them. The exchange-correlation energy thus
depends on the polarization, and this dependence, not
taken into account previously, will generate an exchange-
correlation electric field, identified with the slow linear
variation of the exchange-correlation potential observed by
Godby, Sham, and Schliiter [9]. We then explore a simple
model that exhibits the crucial features of our theory, and
explain the relationship to the scissor-correction approach
to the dielectric tensor.

In the DFT approach to the many-body problem, it is
shown that the knowledge of the density n(r) of the ground
state of a system with Hamiltonian H = T + V, , +
v (sum of the kinetic T, electron-electron interaction
V, „and one-body local potential u operators), uniquely
determines the local potential v(r) of this Hamiltonian up
to a constant.

Unfortunately, the straightforward application of a
homogeneous electric field (linear potential) to a system
with a periodic potential does not allow for a ground
state solution [11]: A translation against the direction of
the field by a whole number of lattice constants would
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6n&(r) = lim 6 Pq sin(qr),
q~O

(3)

where 62 is the change of polarization for q = 0.
The elaboration of a density functional theory for these

perturbations must answer the following question: What
quantities do we need in order to determine 60 and the set
of 6v (G) uniquely?

Keeping in mind that we must stay within perturbation
theory and treat only infinitesimal electric fields, we now
provide a perturbative analog of the first Hohenberg-Kohn
theorem [1]: The knowledge of the change in density
everywhere uniquely determines the change in potential.
This theorem could be proved by taking the infinitesimal
limit of finite differences of the first Hohenberg-Kohn
theorem [1], but this approach cannot be followed for
electric fields, since only infinitesimal electric fields
are allowed. The following demonstration stays strictly
within perturbation theory.

We consider the Hylleraas minimum principle [13]: A
trial change in wave function 6 @,gives an upper bound on
the second-order change in energy

&6@,IH —&16&,& + (&6016vl@& + c c.) (4)

This principle is valid under the constraint &6@,1$& +
($16@,& = 0. The minimum is reached only for the 6P
that is the response of the quantum-mechanical system to
the change of potential 6v. When this change of potential

always lower the electronic energy. The impossibility of
a ground state in the presence of a finite electric field
renders invalid the original proof [1]of density functional
theory for this case.

The use of perturbation theory allows us to bypass this
problem. We choose to work in the long wave method
[12] (an infinitesimal sinusoidal perturbation whose wave
vector tends to zero). Equivalent results may be obtained
using other techniques mentioned in Ref. [12]. Atomic
units, for which the electronic charge is —1, are used. The
change of total potential corresponding to an infinitesimal
electric field 6C is (written in one dimension for brevity)

6vg(r) = lim6P.
sin(qr) . 6C= lim, (e'~" —e 'q') . (1)

q~O q q-o 2iq

We also allow for changes of potential that are periodic
in space, with the same periodicity as the unperturbed
system: 6vG(r) = 6v(G) e' " with 6v(G) = [6v(—G)]*,
where G is a nonzero vector of the reciprocal lattice.
These changes of potential are obtained, in the long wave
method, from the Fourier components of the potential

6vo(r) = lim(6v(G+ q)e' " + 6v(G —q)e' ")
(2)

such that 6v(G)/2 = 6v(G + q) = 6v(G —q).
In response to these perturbations, at finite q, the system

will develop changes in density described similarly by
6n(G ~ q). The long wave part of this change in density,
for q ~ 0, will be [12]

where the change in density 6n, (r) is easily derived
from the knowledge of the unperturbed wave function
and the trial change in wave function. Now consider
two changes in potentials 6 v ~ (r) and 6 vq(r) such that
6v&(r) 4 6vz(r) + const. The Hylleraas minimum prin-
ciple applied to the perturbation 6v~(r) gives

(6@iIH —F-I6@i& + 6vl(r)6nl(r)dr

&6021H &16@2& + 6v)(r)6n2(r)dr, (6)

while for the perturbation 6v2(r), a similar inequality,
where 1 and 2 are interchanged, is obtained. Summing
these two inequalities leads to

0 ( [6vi(r) 6v2(r)] [6n2(r) —6n~(r)]dr . (7)

Setting 6n~(r) = 6nq(r) would lead to a contradiction,
showing that two different changes in potential must in-
duce two different changes in density. Thus the knowl-
edge of 6n(r) everywhere uniquely defines the 6v(r) that
induced it.

The same line of argument can be used in the case of
perturbations of periodic systems with finite wave vector
q, as previously defined. All quantities have to be nor-
malized to the unit cell volume. This normalization, and
a Fourier transform, applied to the term f 6v(r)6n(r)dr
in Eq. (5), changes it into A„~~ go(6v"(G + q)6n(G +
q) + 6v*(G —q)6n(G —q)). The limit q~0 is now
taken for two different perturbations described by
(M), 6v)(G)) and (672, 6v2(G)). The G = 0 term is
isolated, and the long wave values from Eqs. (1) and (3)
are used, leading to the following extension of Eq. (7):

0 ( " (6Pi —672)(62' —62()
2

+ g [6v,*(G) —6 v2 (G)]
GOO

X [6n2(G) —6n~(G)] (8)

If we now suppose 62~ = 62q and 6n~(G) = 6n2(G),
the expected contradiction is obtained. From this result
we conclude that the change in potential and electric
field can be deduced from the knowledge of the change
in density and polarization that were induced by them.
Note that the knowledge of the change of polarization is
crucial, since it is the quantity conjugate to the change
of electric field in Eq. (8): If 62~ were allowed to be
different from 62&, Eq. (8) could be satisfied for some
60i 4 682. The dependence on polarization is a remnant
of the ultranonlocal dependence on the long wave part of
the change in density, Eq. (3), that vanishes for q = 0.

is a one-body local operator, Eq. (4) becomes

6~F ~ (6@,IH —EI6@,& + 6v(r)6n, (r)dr, (5)
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ence between the target and computed density is 4 parts
per 103.

This example illustrates that the action of a linear poten-
tial A(V,„, + VH), superimposed on a periodic potential,
in the case of an interacting-electron model system can be
mimicked by tvvo different potentials AV, &f &

and AV, ff 2,
acting upon the corresponding noninteracting electron sys-
tem, in contrast to a naive application of DFT theorems.
However, AV, ffp is not able to reproduce the polariza-
tion (0.037 electron) associated with the long-wavelength
charge density. Moreover, A(V„, + VH) and the linear
component 5V,ff ] of the Kohn-Sham potential 5V,ff ]

differ by 15%, because of the existence of the exchange-
correlation electric field.

We now discuss briefly the implications of our theory
for practical calculations. LDA or GGA techniques can
be used to approximate the periodic density dependence
of E„. Unfortunately, since the homogeneous electron
gas is metallic, we do not see any easy way to modify
LDA or GGA in order to obtain a polarization-dependent
exchange-correlation energy that would generate the sec-
ond term in Eq. (11). Nevertheless, our theory allows the
scissor-operator correction to be understood as an approxi-
mate way of bypassing this dependence.

Indeed, in Ref. [10], it was shown that the effect of a
slowly varying potential AV that induces transitions be-
tween valence and conduction bands with a gap Es [see
Eq. (10) of Ref. [10]] is approximately equivalent to the
effect of a slowly varying potential AV + AV„ that in-
duces transitions between valence and conduction bands
with a gap FD" [see Eq. (11)of Ref. [10]].Hence, the ex-
act density-polarization functional theory calculation in a
field R' + 6E„,with a gap E "I,can be approximately re-
placed by a LDA calculation in a field 68, with a modified
gap Eg this is the LDA + scissor correction, which gives
a dielectric constant for Si of 11.2 (experiment, 11.4—11.7,
LDA 12.9—13.5 GGA 12.4—12.6) [6—8].

In conclusion, because the original Hohenberg-Kohn
theorem is not valid for the case of the response to a
homogeneous electric field, we have set up a density-
polarization functional theory, of which an approximate
form is the LDA + scissor correction.
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