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Morphological Stability of Alloy Thin Films
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Misfit stresses are known to produce a morphological instability in dislocation-free thin films.
We examine the linear stability of a planar, alloy thin film, growing by a deposition Aux from the
vapor. The stability of the film surface is influenced by stresses generated by both compositional
inhomogeneity and lattice mismatch between the film and substrate. Under certain conditions, tensile
misfit strain can completely stabilize the growing film, whereas the same magnitude of compressive
strain is destabilizing. We compare our results with previous theoretical and experimental work.

PACS numbers: 68.55.—a

For many years, it was thought that the only mechanism
for strain relaxation in lattice-mismatched thin films was
the development of dislocations along the substrate-film
interface [1]. An alternate mechanism for elastic strain
relief in heteroepitaxial films has been demonstrated, both
theoretically [2—7] and experimentally [7—12]. In this
case, the elastic stress induces the surface of the film
to undergo a morphological instability, which can lead
to the formation of islands [7,9,10], nonplanar surfaces
[8,11,12], or, in some cases, the formation of deep,
cusplike morphologies [12—15]. Such morphologies can
provide sources for stress-relieving dislocations.

These theories for the destabilization of a planar,
stationary interface all predict that, in the absence of
substrate-film molecular interactions and gravity [3,6], a
planar thin film is always unstable to the development of
nonplanar morphologies. The wavelength of the instabil-
ity with zero growth rate A, is set by the competition be-
tween the stabilizing infIuence of surface energy and the
destabilizing inhuence of misfit-induced elastic strain en-
ergy. This wavelength is independent of the sign of the
misfit e between the film and substrate A, E'

Growing thin films, however, are not necessarily un-
stable. Both Spencer, Voorhees, and Davis [5] and
Snyder, Mansfield, and Orr [7] have suggested that the
growing planar surface can be kinetically stabilized, if
the growth rate of the film exceeds the growth rate of
the instability. A sufficiently thick film, however, will
always exhibit a surface instability. Tersoff and LeGoues
[16] have shown that a sufficiently anisotropic surface
energy can provide an energy barrier to the formation of
surface perturbations, resulting in a linearly stable surface.

Previous theoretical work has treated the film as a
single component material; in contrast, much of the ex-
perimental literature describes multicomponent films.
Here, we examine the conditions governing the stress
driven instability in growing, alloy thin films. For
our purposes, alloy films differ from single component
films in one important fashion: The lattice parameter
of the film can be a function of the composition of the
film. While this property is routinely used to adjust

the misfit between the film and the substrate, and to
tailor materials properties such as the band gap, we show
that this dependence can have profound effects on the
nature of this stress driven instability. In particular, this
composition-dependent lattice parameter can stabilize
a planar thin film, of any thickness, against this stress
driven instability, and leads to a dependence of the
morphological evolution of the film on the sign of the
misfit. These results hold even for films with isotropic
surface energy.

We take the film f to be semi-infinite and in contact
with a semi-infinite vapor phase v along the surface X.
We assume that local equilibrium exists between the film
and vapor; thus we limit our discussion to small film
growth rates. The system is composed of two species,
A and B, which are substitutional in f. The morphology
is allowed to evolve by surface diffusion, with an intrinsic
diffusivity D~, as well as an accretive fiux Q from v.

Stress in the film can result from both misfit strain
and variations in the film composition. Composition
variations, which can accompany the development of
nonplanar surfaces, generate stress because the lattice
parameter varies with composition. The magnitude of
this effect, for a cubic lattice, is related to the solute
expansion coefficient, g = ( ail/IBC )/Ia[I17], where C
is the mole fraction of component A and a~ is the
lattice parameter of the film. To isolate the composition
dependence of the lattice parameter, we define the misfit
as e = (aI —a')/a', where aI is the lattice parameter
of the film in the unperturbed state and a' is the lattice
parameter of the substrate. Throughout this paper, we
denote the basic or planar state value of a quantity $ by g,
and the difference between the perturbed and basic state
values by g = g —g.

The motion of the interface, due to surface diffusion
and a deposition flux normal to the planar surface Q„, is
determined by mass balance at X. We assume, as is typ-
ical in molecular beam epitaxy [18], that the composition
of Q„equals the average deposited film composition CI,
which can differ from the local-equilibrium vapor con-
centration C . Using the procedure outlined previously

0031-9007/95/74(20)/4031(4)$06. 00 1995 The American Physical Society 4031



VOLUME 74, NUMBER 20 PH YS ICAL REVIEW LETTERS 15 MAY 1995

(2)

[19—21], the normal velocity of the film is given by
po(C" —C )v n = Vy J + (Cf —C")Q„, (1)

in which V~ is the surface gradient, n is the unit
normal to X, pointing from f into v, po is the molar
density of lattice sites in the film, and all densities and
concentrations are evaluated at the interface. The Aux of
component A on X is given by J = —(I 0& /G")V&M&ii
[22,23], where I 0 is the surface density of lattice sites
on X, G is the molar Gibbs free energy of the film
phase, G" = (8 G /BCf )cf=(f, and M~~ is the diffusion
or chemical potential at the surface.

We assume that the system is isotropic and that the
elastic compliances are independent of composition. We
further assume that the vapor pressure is uniform and
negligible, in comparison with the stresses on the film.
From the thermodynamics of stressed solids [17,24], we
obtain the Gibbs-Thomson relation

C Vo(ay + 8 ACr/Tgk)
G" (b, C + P)

on X and the surface gradient of the diffusion potential

&rM~a = ~- &y(~y + & + PqTuk), (3)AC+/
where ~ is the mean curvature of X„, y is the surface
energy of X, C is the elastic strain energy density, AC =
C" —Cf, Tkq is the trace of the stress, P = VogTI, q/G",
and Vo is the molar volume of f . Equation (3) is
similar to the result obtained by Spencer, Voorhees, and
Davis [5] for an ideal solution of vacancies. In contrast
with the usual Gibbs-Thompson equation, (2) is not an
explicit expression for the composition at the interface,
since the stress is a function of the composition at the
interface as well; thus the composition and elastic fields
are coupled. Finally, Eq. (3) shows that the presence
of composition generated stresses alters the value of the
diffusion potential from that used previously [2—7], by
the presence of the term involving

GATI,

I, .
The stress state of the film is found by requiring me-

chanical equilibrium in the infinitesimal strain approxima-
tion. The constitutive law relating stress and strain for the
isotropic film, subjected to biaxial misfit strain and com-
positional strain gCf, is T = C[E —(e + gCf)1], where
T, C, and E are the elastic stress, stiffness, and strain ten-
sors, respectively, and 1 is the unit tensor. We impose a
force balance at the film surface Tn = 0 and require that
perturbations in the strain field decay to zero far from the
surface.

The composition field in the film, assuming that the
diffusivity within the film is zero, satisfies B,Cf = V .
VCf in a reference frame moving at the velocity V of
the planar interface. The composition perturbation must
satisfy Eq. (2) at the surface and decay to zero far from
the film-vapor interface. In the limit of a planar surface,
the mass balance condition (1) implies that the growth
rate of the interface and the deposition fIux are related by
V = —Q„/po, since Cf = Cf.

The basic, or unperturbed, state consists of a compo-
sitionally uniform, biaxially stressed film of composition
Cf, with a planar interface, moving at a speed V. Since
the film is uniform in composition, there are no composi-
tionally generated stresses (see the definitions of compo-
sitionally generated strain and misfit, given above).

The perturbed interface, however, will not have a
constant composition [see Eq. (2)]; thus compositionally
generated stresses will accompany the development of
nonplanar interfacial morphologies. The stability of the
interface is determined by linearizing all quantities about
the planar state. These linearized equations for the
perturbed interface admit usual normal mode solutions of
the form @ = exp(o. t + ia x), where the wave numbers
a and a~ are in the plane of the film and the growth
rate of the perturbation is given by o. . If Re(o.) ( 0, the
system is stable, if Re(o.) & 0, the system is unstable, and,
if Im(o. ) 0 0, an oscillatory instability is present.

Solving for the elastic field, and using the result in
the Gibbs-Thompson equation, allows us to determine
the stress field and composition in the film at all points
along the perturbed interface. The value of the diffusion
potential is therefore known and Eq. (1) can be used to
derive the following dispersion relation for o. [25]:

o —o (a (e* —a) —a V[1 —3V(ie* + q*) —a)])
—a Via (e* —a + Ma71* )

+a V3V (e* + e*il* —a)) = 0. (4)

We have scaled all quantities with the dimensions of
length by a characteristic length Z = y/yo and all quanti-
ties with the dimensions of time by r = 1'/VOI oD The.
dimensionless magnitude of the wave number is a, yo =
G"AC2/Vo, the dimensionless growth rate is V = V r/1,
e" = [2(l + v)Y/go]'l e, il* = [2(1 + v)Y/yo]'l'qhC,
Y = E/(I —v), F is Young's modulus, and 3V = (1 +
v)/(1 + v + il* ). Hence, the conditions for stability de-
pend on the three parameters e*, g*, and V. We do not
consider variations in Poisson s ratio v, as it generally
ranges between 1/5 and 1/3 for the materials of interest.
We take v = 1/4 throughout.

When g* = 0, such that there are no compositionally
generated stresses, the solutions to Eq. (4) are o. =
(e* —a) (a + a%) and o. = —a V; only the first can
produce unstable modes. When there is no deposition,
V = 0 and we recover the results of Asaro and Tiller
[2). The elastic stress, represented by e*, is destabilizing
and the surface energy, which gives rise to the —a term,
is stabilizing. If the film is growing, however, V 4 0
and both the wave number dependence and amplification
rate of the instability are altered from the Asaro and
Tiller predictions. In the limit of very small surface
diffusivity, V » 1, the instability evolves as a result of
the deposition process itself. This is possible because the
composition of the beam is uniform and fixed, whereas
the composition of the film varies with position, as a result

4032



VOLUME 74, NUMBER 20 PHYSICAL REVIEW LETTERS 15 MAY 1995

V= 102 V= 10'

2—

0 I

0

3 0

FIG. 1. Regions of stable (S) and unstable (U) wave numbers
a, for different compositional strains g* and growth rates
V. Misfit is compressive in the upper pair of plots and tensile
in the lower pair. The solid line denotes o. = 0. The dotted
line denotes the wave number that maximizes the growth rate
o.. The region between dashed lines is stable for all a.

of the nonplanar surface. Thus, in this limit, the growth
rate of the perturbations should scale as the amplitude of
Cf, evaluated on X. The consequences of this scaling
are easiest to see in the limit e* = 0, when Cf(X)—
—a @ [see Eq. (2) in the small slope limit]; therefore
o. ——a V, as given above. While the mechanism is
different, a similar wave number dependence for the
growth of the instability is possible for an evaporation/
condensation mass transport process [4,22].

Figure 1 shows neutral stability curves for g 4 0. In
all cases, o- ( 0 for large wave numbers, due to the
stabilizing inhuence of interfacial energy. For e* ) 0,
regardless of the magnitude of either g* or the growth
velocity, the long-wave elastic-stress-driven instability is
still present. Furthermore, g* tends to be destabilizing,
as the band of unstable wavelengths increases with g*.
In contrast, for e* ( 0, the presence of compositionally
generated stresses acts to stabilize very long wavelength
perturbations near a = 0 (see V = 10 2 in Fig. 1). As
the velocity increases, this effect becomes more important
and eventually stabilizes the growing film. This suggests
that sufficiently rapid deposition on appropriate substrates
will enable the growth of planar alloy films. This window
of stability increases in size as V increases. Above the
upper limit of g* at which the system is stable when e* (
0, the instability returns. The compositionally generated
stresses, however, still tend to stabilize the surface, giving
rise to a smaller band of unstable wavelengths with lower

perturbation growth rates than for positive e* of identical
magnitude.

Stress induced by a nonuniform composition field sta-
bilizes a growing thin film by changing the concentration
of the film relative to that of the beam. To illustrate, we
choose a system in which C' = 0 and g ) 0, such that
g* ( 0. Therefore an increase in concentration dilates
the lattice; i.e., the solute atoms are larger than the host
lattice atoms. When e* ( 0, the lattice parameter of the
Hat, coherent film is larger than its stress-free value. Thus
the lattice parameter of the film at a protuberance on the
interface will be smaller than that of the planar, coherent
film. This smaller lattice parameter makes it more dif-
ficult to insert the larger solute atoms into the lattice than
at a planar interface, causing the concentration at the in-
terfacial bump to decrease. As the concentration of the
beam is unchanged, this decrease in concentration allows
the bump to grow faster than the planar interface, which
destabilizes the system. In contrast, if e* ) 0, the lattice
at a bump will expand and the solute concentration will
increase. Since the concentration of the beam is fixed,
this increase in concentration is stabilizing.

The wavelength of the instability that maximizes the
growth rate is strongly influenced by compositionally
generated stresses. Asaro and Tiller found that a
(3/4)a„where a, is the wave number at which o. = 0
and a is the wave number with the maximum growth
rate. In our analysis, this relationship does not hold,
even at g* = 0, due to the inhuence of the deposition
process. For g* 4 0, a increases with increasing g*
and V. Thus, the wavelength of the instability that is
observed experimentally can depend on the deposition rate.

As the dispersion relation (4) is quadratic, an oscillatory
instability is possible. For relatively large values of
rl* and V, within the band of linearly unstable wave
numbers, both unstable steady and oscillatory instabilities
can be present. The presence of an oscillatory instability
is a result of the composition of the film surface being
out of phase with the surface perturbation, due to the
nonlocal effects of stress [26]. This causes more material
to deposit on one side of a bump than the other and makes
perturbations travel laterally across the surface. As the
onset of the instability is not oscillatory, however, only
a nonlinear analysis will determine whether steady or
oscillatory modes will be observed experimentally.

The predictions of our theory are summarized on a
stability map, shown in Fig. 2, indicating the regions in
which a growing thin film will be stable or unstable, for
any wave number perturbation. The system is stable when
e* = 0 and it is unstable when g* = 0 and e* 4 0.

Most experiments have been performed in the region
in which the film is predicted to be unstable, e* ) 0,
g* ) 0. Two experiments, however, indicate that the sys-
tem may be stable when e* and g* are of different signs.
Xie et al. [27] deposited Sio5Geo5 films on SiGe(001)
substrates of different compositions. They showed a

4033



VOLUME 74, NUMBER 20 PH YS ICAL REVIEW LETTERS 15 MAv 1995

Center at Northwestern, Award No. DMR-9120521, and
an Advanced Research Projects Agency NDSE Graduate
fellowship.

Us

V= 101

V= 100

V= 101
V= 102

FIG. 2. Stability map, as a function of misfit e*, composi-
tional strain g*, and deposition rate V, where S, Us, and
Uo8, s, denote regions of stability, instability, and combined os-
cillatory and steady instability, respectively. The map is an-
tisymmetric about e* = g* = 0, such that (e*, g*) maps to
(—e*, —g*). For most systems, g* o 0.

strong stabilization of films under tension (e* ( 0).
Based on molecular dynamics simulations, they have as-
cribed this phenomenon to changes in step-edge energies.
Thus, in Si-Ge, both the variation in the surface energy
with strain and compositionally generated stresses act to
stabilize a planar film. Ponchet et al. [28] deposited a
multilayer structure of GalnP and InAsP on InP(001). The
first, tensile layer of the superlattice structure was stable,
whereas the second layer, with e* ~ 0, was unstable.
Weatherly [29] has observed a similar dependence of thin
film stability on the sign of the misfit in quaternary III-V
alloys.

We have demonstrated that stresses generated by a
nonuniform composition field can have a profound effect
on the nature of the stress driven instability in thin films.
Such stresses can stabilize a system against the instability,
induce oscillatory modes, alter the wave number at which
the instability develops, and result in an instability which
is controlled by the sign of the misfit. These effects are
intimately related to the dynamical process of thin film
deposition and are not present in static systems. Finally,
we have shown that the deposition process itself can lead
to the development of the instability as well as alter its
experimentally observable wavelength.
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