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Self-Diffusion in Supercooled Binary Liquids
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Frequency-dependent self-diffusion coefficients D, (cu) for both particle species of a supercooled
binary hard-sphere liquid have been calculated within a mode-coupling approximation. For a disparate-
size mixture we find a glass transition at a critical packing fraction g& in connection with the localization
of the large particles only. The small spheres retain a hnite mobility within the glass. It is found that
a little bump appears in D, (cu) of the small particles at low frequencies when the glass transition
is approached, which implies that the diffusion mechanism of the small particles changes from fast
liquidlike diffusion to slow diffusion in a random potential.

PACS numbers: 64.70.Pf, 64.60.Cn

The mode-coupling theory of the glass transition for
one compon-ent liquids [1—3] has been extended to mul
ticomponent systems [4,5] several years ago. This gener-
alization has cast new light on the theoretical aspects of the
relaxation dynamics in nonsimple liquids, the latter show-
ing a much richer variety of possible phenomena than sim-
ple one-component liquids. Extensive analyses have been
made of the long-time limits of density-relaxation func-
tions (nonergodicity parameters) for special examples of
binary liquids, supplying us with detailed information on
Debye-Wailer factors (DWF) and Lamb-Mossbauer fac-
tors (LMF) [4,6—9]. From these calculations it has been
predicted that there is a new phase between the liquid and
glassy phases in disparate-size binary mixtures [4,9]. In
the new phase, which we call a delocalized phase, a glass
is formed only by the big particles, while the small parti-
cles retain a finite mobility diffusing through the voids of
the glassy structure formed by the immobile big particles.
The appearance of the delocalized phase will be closely re-
lated to such interesting phenomena —known from certain
real glass formers —as rapid hydrogen transfer in amor-
phous metals and glassy ionic conductors. Both for basic
theoretical aspects concerning the interplay of glass transi-
tion and delocalization transition and for possible applica-
tions in the development of amorphous batteries, it would
certainly be desirable to reach a better understanding of
the above phenomena than one could get from the discus-
sion of DWF and LMF alone. In this Letter, we there-
fore investigate dynamicaL properties of the same binary
disparate-size mixture in its supercooled-liquid phase by
solving the full wave-number- and time-dependent mode-
coupling equations for the system. In the following, the
existence of the new phase ("liquid within the voids of a

glassy structure") will be confirmed not only by the lo-
calization lengths but also by the diffusion constants of
both particle species of a binary hard-spheres mixture. The
change in the diffusion mechanism of the small particles
near the glass transition is discussed from a dynamical
viewpoint.

The basis of our calculations is the mode-coupling
approximation (MCA) for multicomponent liquids [5]. It
allows us to determine the set of partial-density relaxation
functions of an S-component liquid (s, s' = 1, 2, ..., S),

4„(q, t) = (BN '
(q, t)t BN '

(q, 0))/k T,

with the particle density of sth species defined as

Ns

Ni'l(q, t) = g exp[ —iq . r,
'

(t)],
QN,

from the following set of matrix nonlinear integro-
differential equations:

C&(q, t) + A (q) *4(q, t)

dt'K(q, t —t') *I (q, t') = 0, (3)

with initial conditions 4 (q, t = 0) = S(q)/kBT and

4(q, t = 0) = 0. Here S(q) is the matrix of partial
structure factors, and 02(q) = q v, h *S(q) ' denotes
the restoring-force matrix with [v,h]„t = (ksT/m, ) o„i
While Eq. (3) is formally exact, the relaxation-kernel
matrix K(q, t) reads in MCA

K(q, t) = (kBT) v,„* d k

(27r)' [(k . q ) c(k) * 4(k, t) *c(k) o 4(~ q —k i, t)

+ (k q )(q —k q )c(k) * 4(k, t) && 4(( q —k (, t) * c(~ q —k ~)], (4)
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where qo = q/q and the * denotes ordinary matrix
multiplication, while the o stands for the element-wise
product of matrices, [A o B)„=A„B„. The non
symmetric matrix c(q) is related to the Ornstein-Zernike
direct correlation function C(q) as c(q) = w * C(q) with
w„= QX, /V 6„. The above equations can be solved to
find the coherent density-correlation functions [Eq. (1)] of
a multicomponent system, once the partial structure factor
5(q) is known as an input. For a binary mixture of hard
spheres, this input is available within the Percus-Yevick
approximation in analytic form [10].

The time evolution of the incoherent density correlation
function of species s may also be expressed by the
generalized oscillator equation

dt'K, (q, t —t')P, (q, t') = 0, (5)

Once the set of coherent density-relaxation functions
cd(q, t) for a supercooled liquid has been determined
by solving Eq. (3), these functions along with the static
structure factors serve as an input when solving Eqs. (5)
and (6) for the incoherent density-correlation functions.
Interesting quantities such as a generalized wave-number-
dependent localization length I, (q) and a frequency-
dependent diffusion constant D, (cu) are determined from
the incoherent relaxation kernel K, (q, t) by the following
formula:

l, (q) = 2k' T/m,
K, (q, t = ~)

—1/2

(7)

D, (cu) = Im
kg T/m,

co + lim, oi fo dt e"~~ lK+(q = 0 t)
(8)

with initial conditions P, (q, t = 0) = 1 and @,(q, t =
0) = 0. The relaxation kernel K, (q, t) reduces in MCA
to

K, (q, t) = (k q')'[c(k) *&&(k, t) *c(k)]„(kpT)' d3k

m, (2')3
X P, (~ q —k ~, t). (6)
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a liquid phase for q ( g~ = 0.52, in which both parti-
cle species are mobile [1/I2(q) = I/l~(q) = 0]. We note
that the localization length of the small particles increases
continuously to infinity according to l&(q) ~ (zt —rt~)
as the delocalization transition is approached [9]. Simi-
lar behavior of the localization length has been derived for
a quantum particle in a static random potential [11,12].
In contrast to the small particles delocalizing continuously
within the glassy matrix, the large particles merely exhibit
a slight increase in their localization length as the pack-
ing fraction is decreased. Near the melting density, how-
ever, /2(q) grows more rapidly approaching a finite value
at q~ which is slightly less than 10% of the diameter of
large particles (l2"" = 0.089cr2, see below) in close agree-
ment with Lindemann's criterion known for the mean-
square displacement of atoms in a crystal. When passing
the glass-liquid transition point ztz (towards low zt), the
localization length of the large particles jumps to infinity
discontinuously. The large-particle behavior found in the
mixture here is very similar to that predicted from MCA
for the localization length in a one component sy-stem [2].
Assuming the same glass-transition scenario derived by
Gotze and co-workers for the one-component system [3]
also for the binary system, we expect a critical exponent
of 1/2 for the nonergodicity parameters of the number den-
sities [6,8] implying the large-particle localization length
to vary like (g —rtB)'/ near q~. Since I/l2(q) ) 0 at

g = 0.52 and I/l2(q) = 0 at zt = 0.519, we can assume
that g~ = 0.5195. Using this value of g~, the calculated
points in Fig. 1 are, indeed, well represented by
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FIG. 1. Inverse localization length o.&/l, ( ql of the small {open
circles) and large (solid circles) particles at qo.2

= 0.02.

This program has been carried through for a binary (5 =
2) hard-sphere system with size ratio 6 = . /oIo=z0.2
and concentration of small spheres c = 0.9. In Fig. 1 we
outline three phases of the system by plotting the inverse
localization lengths of the small and large particles, I/II (q)
and I/l2(q), respectively, versus the total packing frac-
tion iI = zt2[1 + c/(1 —c)6 ], where rtz = (~/6)n2o-2
denotes the large-particle packing fraction: (i) a glass phase
for g ) g~ = 0.53 with all particles being localized, (ii) a
"porous glass" for g~ ) g ) g& containing mobile small
particles [I/l~(q) = 0 and I/lz(q) ) 0], and finally (iii)

(9)

with (l2"'/o2) ' = 11.30, a = 27.11, and b = 174.4. In
Fig. 2 the diffusion constant D, (cu) (in multiples of
o.2 coo) at cu/coo = 10 (coo = k&T/m2o2) is plotted with2 2 2

respect to rt, where zt is chosen as g = rt& —(1/2)"
with n = 3 —9. The diffusion constant of the small
particles becomes more than 10~ times larger than that
of the large particles near the glass transition point q~,
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FIG. 2. Diffusion constant D, ( o)rat or/oro = 10 " for the
small (open circles) and large (solid circles) particles.
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implying that the large particles are almost frozen while
the small particles still retain a high mobility. We note
in passing that liquid Ar near its triple point would be
represented by the point r] = 0.44 and log&pD 1.32
in Fig. 2 corresponding to DA, = 4D~. The calculated
points are well fitted (using the iterative nonlinear-fit
procedure supplied by MATHEMATICA) by the power law
D = Do~rl —rl~~ with y = 1.05 and 2.53 for s = 1 and

2, respectively. From the extrapolation in terms of the
power law (dotted lines), the diffusion constants are
found to vanish at g = 0.53 and 0.52 for s = 1 and

2, respectively, which are in good agreement with the
transition points g& and g& identified by the divergence
of the localization lengths. It is interesting to note that
the exponent y for the large particles is close to that
of a one-component hard-sphere system; y = 2.58 [13].
This confirms the validity of our assumption that —as
far as the localization of large particles is concerned
the transition mechanism in a binary system at g = g&
is the same as that of the liquid-glass transition for
a one-component system. For the small particles, on
the other hand, the power y is greatly different from
2.58. Their behavior will be markedly different from
that of one-component liquid particles emphasizing the
limits of applicability of the one-component theory in
the treatment of multicomponent systems. We note that,
contrary to the one-component case, there is no analytic
prediction of a power-law behavior of the diffusion
constants near the glass transition in the case of a binary
liquid. The main purpose of our power law fits in Fig. 2
is, therefore, to demonstrate the qualitative difference in
the g dependence of DI and D2. Figure 3 illustrates the
diffusivity D, (or) (in multiples of o.zoo) for both particle
species as a function of co in a logarithmic scale. We note
that a little bump appears in D~(or) in the small or range
(or/orp ( 10 ~) as the glass transition is approached. This
bump, which has not been predicted by a one-component
theory, grows in D~(or) as rl increases, while no bump is
observed in Dz(or) for all rl of our calculations. Since
the cu range of the bump is in the quasielastic region of
the incoherent relaxation spectra &f&, (q, or), the appearance
of the bump will be related to the change in the diffusion
mechanism of the small particles. Our interpretation of
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FIG. 3. Frequency-dependent diffusion constant D, (or) for the
small (a) and large (b) particles.

the bump is the following. When D~ and D2 are large, the
diffusion of both species is liquidlike (Gaussian process).
For g close to g&, however, the motion of the large
particles becomes sluggish, and they are almost frozen
near the transition, producing an almost static potential
field which the small particles would experience when

they move through the glassy matrix of the large particles.
Therefore the diffusion of the small particles at g —g~
will be similar to that of a particle moving in a static
random potential, which is different from the diffusion in
normal liquids. The appearance of the bump in D~(or)
is interpreted as an indication of the change from the
liquidlike diffusion to the slow diffusion in an "almost
fixed" random potential.
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