
VOLUME 74, NUMBER 20 PHYSICAL REVIEW LETTERS 15 MAY 1995

Experiments with Turbulent Soap Films
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A vertical soap film channel driven by gravity is used to study two-dimensional turbulence. Velocity
differences on different scales and the spectrum of velocity fluctuations show behavior very different
from their three-dimensional counterparts. Our findings are consistent with the theoretically predicted
enstrophy cascade picture for two-dimensional turbulence. However, significant differences were
observed.

PACS numbers: 47.27.Gs, 68.15.+e

Many theoretical studies and the few experiments
that exist leave little doubt that two-dimensional (2D)
turbulence and three-dimensional turbulence are very
different. One might expect that numerical studies, being
so much easier in two dimensions rather than three, might
have resolved all the fundamental issues at stake, but this
is not the case.

Herein we describe a study of a soap film [1] that
flows between two parallel vertical wires. Though there
probably is appreciable damping of the flow by the
coupling between the moving film and the air surrounding
it, the velocity field in the film exhibits features that
one associates with 2D turbulent fIow. In spite of
this coupling, a soap film is sufficiently thin (thickness
typically several p, m) that the direction of the vorticity
~ is almost fully perpendicular to the plane of the film.
Components of co in the plane of the film are very heavily
damped.

Because co is perpendicular to the fIow field v, an
important turbulence-generating mechanism is absent,
namely vortex stretching [2]. Another distinguishing
feature of 2D turbulence is the appearance of a second
conserved quantity in the absence of dissipation, namely
the mean-square vorticity, also called the enstrophy. In
the 2D case, Kolmogorov-like arguments and detailed
calculations suggest that for scales 4 greater than the
injection scale 8;„„, there is an energy cascade to eddies
of larger size. For 4 ( 4;„; there is an enstrophy cascade
to smaller eddies [3,4]. For the energy cascade, it is
believed that the mean difference in velocity between two
points separated by a distance 4 scales as (Bv(8)) ~ 8
with n = 1/3, as in the 3D case. On the other hand, for
the enstrophy cascade the same sort of scaling arguments
yield o. = 1. These predictions are applicable only to
homogeneous and isotropic turbulence.

We have probed turbulence in the soap film by two
methods. One of them, homodyne photon correlation
spectroscopy (HCS) [5], has the advantage of not requir-
ing the employment of Taylor frozen turbulence hypothe-
sis. According to this hypothesis, the structure of the
small eddies does not change as they are swept across
the observation point by the mean flow. The method per-

mits one to explore a selected component of the velocity
difference Bv(4) = v(r + 8) —v(r) on a scale Z. More
precisely, the HCS scheme yields the cosine transform of
the probability density function P(6v(Z)), that is its sym-
metric part, and the width Bv(/) of P Here .v is the
component of v along the momentum transfer vector q, as
discussed below. A disadvantage of the HCS scheme, as
we have used it, is that 4 is limited to several millimeters
for photon coherence reasons [6]. In the present experi-
ments 4 was varied from 0.06 to 0.4 cm.

We also measured the power spectrum of the ve-
locity fiuctuations S„(f) = (v (f)v*(f)) and S~Y(f) =
(vY( f)v*(f)). Here v, (t) and v~(t) are, respectively, ve-
locity fluctuations perpendicular to the flow direction and
parallel to it, and f is the frequency. The brackets desig-
nate time or ensemble averages. These spectral measure-
ments are made at a fixed point in the film, and the Taylor
frozen turbulence assumption is used to relate the tem-
poral measurements to spatial ones, i.e. , f = k~V/27' =
V/8, where V is the mean fiow velocity (which is in the y
direction) and k is the wave vector. These spectral mea-
surements were made with a novel fiber velocimeter to
be described below. The experiment explored velocity
fiuctuations on large scales Z = 2'/kY between 0.2 and
20 cm. If the turbulence is isotropic S« = S», a con-
dition that could be achieved, S and Syy are related to
the energy spectrum of the turbulence, F(k) At large.
f (small 4) the velocimeter measurements and the HCS
measurements of Bv(4) are in agreement with each other.
They are also reasonably consistent with calculations [3]
and observations [7] that indicate that the mean-square
vorticity, or enstrophy, cascades from larger eddies to
smaller ones.

The soap film channel was driven by gravity and
fed by a reservoir which was filled with soapy water.
The film spanned a pair of parallel vertical wires of
separation W = 5 cm that were attached to the reservoir
floor. The soap solution in the reservoir was fed into
the film by small holes, of radius R = 0.02 cm, drilled
into the reservoir bottom. The wires were weighted at
the bottom end, and these weights were suspended in a
second reservoir also filled with soapy water. The length
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of the wires was 180 cm. The soap solution consisted of
a commercial detergent of concentration 4% and glycerol
of concentration 5-% in distilled water. The glycerol
increases the lifetime of the film, which could flow for
many hours without breaking.

The level H of soap solution in the upper reservoir
controlled the mean vertical film speed V. To a good
approximation, it was found that V = n rr R $2g H/W h,
where n is the number of holes, g is the gravitational
constant, and h is the mean thickness of the film. For
h = 5 p, m, V could be varied between 20 cm/s and about
4 m/s. We could not study the small-velocity, laminar
flow regime in this channel, as a convective instability
sets in, producing backflow of patches of thin film. The
velocity V was measured using laser Doppler velocimetry
(LDV). From a measurement of V and the total fluid
fiux (in cm3/s), one obtains an estimate of the mean film
thickness h, which was typically 5 p, m.

Because the HCS scheme is not widely used, it is
necessary to describe it briefly before turning to the
experimental results themselves. As in LDV, one seeds
the fluid with small particles which scatter the light. The
seed particles were polystyrene spheres having a diameter
of 0.1 p, m. The light source was a 300 mW argon laser
beam of vacuum wavelength A = 514 nm. A prism splits
the beam into two mildly focused beams brought with two
mirrors to form two horizontally oriented bright spots of
adjustable spacing 4 on the flowing film.

The incident beams were at 45 with respect to the
film. The scattered light was recorded by a photomultiplier
located on the opposite side of the film at a scattering angle
0 of 90 . The scattering plane was horizontal, assuring
that the scattering vector q was perpendicular to the flow
direction. The magnitude of the scattering vector q is
given by q = (47m/A) sin(0/2), where n (= 1.33) is the
refractive index of the film. With the above geometry,
the measurements are insensitive to velocity variations in
the flow direction.

The scattered light intensity I(t) reaching the photomul-
tiplier is sent to a digital correlator, which records the auto-
correlation function g(t) = (I(t')I(t' + t))/(I(t'))~, where
the brackets indicate an average over s'. This function con-
sists of an uninteresting time-independent part and a time
varying part G(t), which within a multiplicative constant
is the cosine transform of P(6v(8)), i.e. ,

G(t) = P(Bv(8)) cos[q6v(8)t]d6v(8). (1)

If P has the self-similar form P(6v(Z)) =
Bv(4) 'Q(6v(g)/Bv(g)) and if Bv(Z) ~ 8, then G(t) will
also be self-similar, i.e., G(t) = G(q6v(Z)t) = G(qZ t)
The exponent n is determined by plotting a series of
curves G(t) vs tZ for a range of 8 and varying n to bring
them into superposition. For this experiment we identify
the width of P(6v(8)) with the 1/e time of G(t) and note
it as (Bv(8)).
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FIG. 1. Scaling form of the intensity-intensity autocorrelation
function. The data have been rescaled to t8 with n = 0.5 (a),
1.0 (b), and 1.5 (c). The scattering volume was at Y = 0.5 cm
below the comb with M = 0.1 cm, and the mean Row velocity
was 1 m/s. Here 4 is 0.4 cm (triangles), 0.29 cm (squares),
0.19 cm (circles), and 0.14 cm (crosses).

The HCS measurements were carried out at a distance
of 80 cm from the entrance of the channel and for a
mean liow speed V of roughly 1 m/s. A comb (i.e.,
a one-dimensional grid) was inserted into the film, and
the velocity field was probed at distances Y = 0.5 and
2.7 cm below this comb and at a point equally distant
from the parallel wires. The teeth spacing of the comb
was M = 0.1 cm.

Figure 1 shows the extent to which G(t) [and hence
P(Bvg))] has the simple scaling form discussed below
Eq. (1). A set of measurements were made at four values
of 8, as designated in the figure caption. The measured
G(t) was rescaled by multiplying the time variable by 8
to see if they could be superimposed. We show the results
for three values of u so one can see that the preferred
choice is n = 1 with an uncertainty that we estimate as
~0.5. There is simply no self-similarity if one uses the 3D
exponent n = 1/3. As already noted, an n value of unity
corresponds to an enstrophy cascade from large to small
scales. The functional form of G(t) is closer to being
a Lorentzian, implying that P is a decaying exponential
function. This finding for the soap film is in contrast with
measurements in 3D flows in water tunnels where G(t)
decays exponentially [5,8].

Figure 2 is a plot of r '(4) = q(6v(4)) as a function of 8
as measured at distances I' = 0.5 cm (curve a) and 2.7 cm
(curve b) below the comb. A typical relaxation time
r of G(t) for 8 —0.2 cm is approximately 3 p, s, which
corresponds to a characteristic velocity (Bv) = 1/qr =
1.5 cm/s. Here, a linear increase of (Bv) with 8 is again
observed, except when f ( 0.15 cm, where (Bv(8)) loses
its 4 dependence. This effect arises from the fact that
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FIG. 2. Inverse decay time 1/r as a function of length scale 4.
Curves a and b are for scattering volume at Y = 0.5 and 2.7 cm
below the grid, respectively. The mean velocity of the flow
is 1 m/s. Inset: I/r for fixed t' = 0.28 cm and for different
distances from the comb with M = 0.1 cm.

the two beams passing through the film are not parallel
and therefore correspond to different values of q. This
introduces an Z-independent term in G(t) of the form Aq .

V that dominates the decay of G(t) when 8 & 0.15 cm.
It is apparent from a comparison of a and b in Fig. 2

that the slope of (Bv(8)) vs 8 is much larger at the
observation point Y = O.S cm than at the more distant
point Y = 2.7 cm. Thus the amplitude of the velocity
fIuctuations decreases with increasing F. This finding is
more clearly seen in the inset of this figure, which shows
(Bv) vs F for a fixed 4 = 0.28 cm. Other measurements,
made very far below the comb (Y ) 10 cm) establish that
(6v(8)) ceases to decrease with increasing I', as the liow
loses memory of the presence of the comb.

Our finding, n = 1, is consistent with the How in the
soap film being laminar as well as being consistent with
an enstrophy cascade. If the How were laminar, n would
be unity if (Bv(8)) were measured in the direction of the
flow. However, the HCS measurements were made in the
transverse direction such that q . V = 0. Laminar flow
would produce no velocity differences with this geometry
and G(t) will decay only by virtue of Brownian motion
of the seed particles. Additional evidence that the flow is
not laminar comes from data taken with the vibrating fiber
velocimeter.

The velocimeter consists of an optical fiber connected
to the output of a small laser. The fiber penetrates the
film (without rupturing it), and its defiection x(t) and y(t)
were separately recorded. The fiber penetrated less than
1 mm through the film, and the deflection of this glowing
end was measured with a position-sensitive detector.
The fiber was clamped at a point L a few millimeters
from the film. This very short fiber length allows for a
relatively high resonance frequency fo = 2.5 kHz. Useful
measurements of S (f) and S»(f) can be made at f
appreciably less than fo The chosen value . of fo was a
reasonable compromise that gave an adequate signal-to-

noise ratio. Separate calibration runs established that the
fiber deflection is proportional to the velocity. The fiber
perturbs the quid motion but only for a radial distance
comparable to its diameter, which is SO p, m.

The output of the position-sensitive detector is fed to a
spectrum analyzer (HP 3561A), which displays the power
spectrum of S„(f) and S„(f) of the velocity fiuctua-
tions v (t) and v~(t). Invoking the Taylor hypothesis,
one can calculate one-dimensional (1D) spectra S»(k, ) =
Sx, (2vrf/U) and S„(k~) = S„(27rf/V). If the turbulence
is isotropic and homogeneous, and if the 1D spectra S„,(k, )
and S„(k~) show power-law behavior, the spectra would
have the same power-law dependence as E(k) [9]. Typi-
cally, V = 2 m/s, so that the largest k or the smallest
length scale that could be probed by the velocimeter was
8 = U/f = 0.2 cm.

To produce nearly isotropic turbulence S„(f) =
S»(f), a comb was inserted through the film. For a
few centimeters below it these two spectra were roughly
equal, implying that the turbulence is isotropic. In Fig. 3,
the lower two spectra are for transverse and longitudinal
velocity fluctuations taken at 4 cm from a comb with
M = 0.3 cm. In this log-log plot S„(f) and S»(f)
appear to be roughly the same for most of the frequency
range covered. One sees that these spectra could be
described as being of algebraic form, S»(f) —f ~ for
most of the frequency range, while S„(f)—f " only
for the high-frequency range 100 ( f ( 1000 Hz. The
limiting slope here is roughly p —3.3.
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FKJ. 3. Power spectrum of the fiber position fluctuations or
equivalently the velocity fluctuations measured at a distance
of 80 cm from the entrance of the channel. The lower two
spectra are for the longitudinal S„,, ( f) (open squares) and
transverse S„(f) (open circles) velocity Iluctuations at 4 cm
behind a comb with M = 0.3 cm. The upper two spectra are
for longitudinal (filled squares) and transverse (filled circles)
fluctuations as measured at 1 cm behind a comb with M =
0.1 cm. Inset: spectra in the absence of the comb as measured
at a distance of 80 crn from the entrance of the channel. The
diamonds are for longitudinal fluctuations, and the triangles are
for transverse ones. Here U = 2 m/s. In this inset we display
the power spectra out to f = 10 Hz, so that the effect of the
resonant frequency of the fiber may be seen.

3977



VOLUME 74, NUMBER 20 PH YS ICAL REVIEW LETTERS 15 MAY 1995

Measurements were also carried out for a smaller
teeth spacing M and close to the comb. The functional
shape of the spectra changes measurably when M is
changed. The two upper spectra in Fig. 3 are taken at
1 cm behind a comb with M = 0.1 cm. Here the spectra
could be described as being of algebraic form only at the
high-frequency range 100 ~ f ~ 1000 Hz. The slope for
this range is about 3.6, whereas the HCS measurements
of u imply a p, = 2n + 1 = 3. At the low-frequency
end of the spectrum, 10 ( f ( 200 Hz, the slope p, is
approximately 2 for the longitudinal component and much
less for the transverse one, though the data do not span
a wide enough frequency range to permit assigning a
meaningful value to this exponent. If this decrease in
slope were indicative of a crossover to an inverse energy
cascade [3], this slope would presumably be 5/3. Gharib
and Derango [7] have used LDV to study turbulence
behind a grid in a soap film, and their results are consistent
with an inverse energy cascade (p, = 5/3) and a direct
enstrophy cascade (p, = 3). They were able to explore
roughly a third of a decade of the inverse energy cascade,
and hence these inverse cascade measurements cannot be
regarded as conclusive.

In our experiment the decrease in slope at small f (or
large scales) in Fig. 3 may have a different origin. The
inset of Fig. 2 shows that the turbulence changes as the
distance to the comb increases. Thus the change in slope
at small f may arise because the turbulence ceases to
be homogeneous in the y direction when f ( 100 Hz, or
equivalently when Z is greater than 2 cm.

When the comb is removed the energy spectrum is no
longer isotropic, with S»( f)/S„(f) = 10. On the other
hand, the slope p, is constant in a log-log plot over a much
wider frequency range than when the comb is present.
This may be seen in the inset of Fig. 3, where the data
show S», and S, vs f having a slope that is constant over
the frequency interval 20 ( f ( 1000 Hz. The value of
p, here is roughly 3. Perhaps one sees power-law behavior
over a wider frequency range in the comb-free case
because the turbulence is then more homogeneous in the y
direction. Note that when S, and S» are no longer equal,

there is no unambiguous way to relate these spectra to the
energy spectrum E(k).

In summary, we have measured velocity differences
over varying length scales 8, using a method (HCS) that
does not require invoking the Taylor frozen turbulence
assumption. We find that (Bv(/)) ~ 8 with cr close to
1 over the interval 0.1 ( 4 ( 0.4 cm. The technique,
which measures the cosine transform of the probability
density for such velocity differences, shows that P(6v(Z))
is self-similar and of exponential form in the millimeter to
submillimeter range of Z. Generally the HCS results were
corroborated by the spectral measurements made with a
fiber velocimeter which probes length scales from 4 = 0.2
to 20 cm. Both sets of measurements are consistent with
the appearance of the enstrophy cascade towards small
scales as expected for 2D turbulence.
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