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Study of Quantum Dynamics in the Transition from Classical Stability to Chaos
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We report an experimental and theoretical study of momentum transfer from a modulated standing
wave of light to a sample of ultracold atoms. This system is a quantum realization of the periodically
driven rotor where the underlying classical phase space goes from stable to chaotic as a control
parameter is varied. Our experimental results are in good absolute agreement with a quantum Floquet
analysis and with a quantum simulation. We relate the quantum evolution to the underlying classical
dynamics in this mixed phase space regime.
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The transition to chaos in classical Hamiltonian systems
has been the topic of great interest in recent years. A par-
allel effort has been the study of systems which undergo
a transition from a regime which can be described classi-
cally to one that is manifestly quantum mechanical ~ These
two seemingly disjoint areas come together in quantum
systems for which the underlying classical dynamics un-
dergo a transition from stability to chaos as a control pa-
rameter is varied. While this problem has been the focus
of much theoretical work, experimental progress has been
more limited [1],and many key predictions have yet to be
verified.

In this Letter we report an experimental and theoretical
study of a quantum system for which the underlying
classical phase space is composed of islands of stability
and regions of chaos. By varying a control parameter the
phase space goes from global stability to chaos and is
mixed in between. Our system consists of a dilute sample
of ultracold atoms in a modulated standing wave of near-
resonant light. Momentum transferred to the atoms is
measured as a function of the modulation amplitude,
which is one of the main control parameters. In previous
work we measured momentum transfer in a classically
chaotic regime and observed dynamical localization [2].
The focus of this work is to relate the quantum evolution
of this system to the underlying classical dynamics. We
compare our experiment with a quantum simulation and
with a quantum Floquet analysis and find good absolute
agreement [3].

Consider the problem of a two level atom (transition
frequency coo) interacting with a standing wave of
near-resonant light (frequency rot), where the position
of the standing wave nodes are modulated at an angular
frequency ~ and with an amplitude AL. For sufficiently
large detuning 8L = too —coL (relative to the natural
linewidth), the excited state amplitude can be adiabatically
eliminated, leading to a Hamiltonian for the ground state
[4) H = p, /2M —(ltd, tt/8) cos[2kt (x —hL sin to t)],
where the effective Rabi frequency is A, ff A /6t,

and kt is the wave number (0 is the resonant Rabi
frequency, proportional to the square root of the
standing wave intensity). The Schrodinger equation
describes the evolution of the center-of-mass wave
packet of the atom in an effective potential. Switching
to scaled dimensionless variables 7 = ro t, @ = 2kLx,
p = (2kL/Mro )p„and A = (4kt /Mro )H, we obtain
A = p /2 —k cos(@ —A sinr), which is the dimen-
sionless Hamiltonian for a periodically driven rotor. The
amplitude is k = co„A,tt/to, where co„= hkt, /2M is
the recoil frequency and A = 2kI. AL is the modulation
amplitude.

To study the classical dynamics of this time-dependent
problem it is instructive to look at the Fourier expan-
sion of the interaction Hamiltonian k cos(P —hsing) =

„kJ (A) cos(@ —mr), where J (A) are ordinary
Bessel functions of integer order. The stationary phase
condition results in resonances at p = P = m which have
approximate widths 4gk~J (A)~ in momentum. Reso-
nance overlap provides a simple estimate of the range
of A for which the classical particle diffuses in momen-
tum. This is most useful in the large A limit, where odd
and even Fourier weights are added separately leading to
a two-kick map description of the dynamics. We con-
centrate here on values of A, where the modulations in
diffusion due to the oscillatory character of the Bessel
functions have to be considered, limiting the accuracy
of a map description. Instead we numerically integrate
Hamilton's equations and use two different sets of ini-
tial conditions. The first is a grid in (@,p) space from
which phase portraits are constructed. The second mim-
ics the experimental conditions, where the p are Gaussian
distributed while the @ are uniformly distributed in the in-
terval [0,2']

The variation of the classical rms momentum width
as a function of A is shown in Fig. 1 (dash-dotted line).
Momentum transfer in this problem occurs primarily
when the velocities of the atom and the standing wave
are matched. Such resonant kicks (RK) occur twice each
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FIG. 1. The rms momentum width as a function of the
modulation amplitude A. Experimental data is denoted by
diamonds and have a 10% uncertainty in momentum associated
with them. The empty diamonds are for an interaction time
of 10 p, s and the solid diamonds are for 20 p, s; classical
simulation for 20 p, s (dash-dotted line); quantum Schrodinger
for 20 p, s (heavy dashed line); quantum Floquet in the long-
time limit (heavy solid line). The light solid lines denote the
RK boundary and the curve proportional to A ' predicted in
Ref. [4]. k, = 0.37, k = 0.16, cu /27~ = 1.3 MHz. A 5%
systematic uncertainty in k is due to laser power calibration.

period, although they are not equally spaced in time.
When the atomic velocity exceeds the maximum velocity
of the standing wave the RK turn off. This leads to an
RK boundary that scales linearly with A (light solid line).
At small A, the distribution quickly saturates near the
RK boundary. As A is increased oscillations occur with
the dips corresponding to zeros of the Bessel functions.
The overall amplitude of the oscillations decreases as A

is increased, due to the reduction of the size of each
RK. The classical simulation for different times shows
that the peaks grow until the RK boundary, while the
dips grow at a much slower rate. This difference in
rates is explained by the phase portraits shown in Fig. 2
(top panel). The peaks are predominantly chaotic while
the dips are nearly integrable. The classical line shapes
in Fig. 2 (middle panel) clearly show these features as
well as the effect of the RK boundary. Initial conditions
contained within an island remain trapped, while those in
the chaotic domain diffuse up to the boundary, leading to
"boxlike" distributions. A clear example of the stability
at the dips is at A = 3.8, where J] has its first zero. The
final momentum spread in this case is governed by the
surviving island due to Jp which has a substantial overlap
with the initial distribution.

We now turn to the experimental study of momentum
transfer from a modulated standing wave to a collection of
ultracold atoms. A schematic outline of the experiment is
given below (a more detailed description is in Ref. [2]).
Sodium atoms are first trapped and laser cooled in a
magneto-optic cell trap (MOT) [5]. This prepares the
initial conditions for the experiment which are Gaussian
distributed in momentum and position. Note that the
spread in position is uniform on the scale of the nodes of
the standing wave. The spread in position on the larger
scale leads to a 10% variation of k across the atomic
sample. After the cooling and trapping stage, the MOT
is turned off, and the modulated standing wave is turned
on for a controlled time (typically, 10—20 p, s), during
which growth in momentum occurs along the direction
of the modulated standing wave. The probability of a
spontaneous emission event during a modulation period
is below 1.0% in this work. After the standing wave is
turned off, the atoms undergo free expansion in the dark for
a controlled time (typically, several ms). The momentum
distribution is refiected in the positions of the atoms after
the free expansion time. This position is "frozen" in with
optical molasses [5], and the resulting atomic fluorescence
is imaged on a charge coupled device camera. The initial
size of the MOT is deconvolved, and the measurement
of position is converted into a momentum spread using
the free expansion time. We also use this technique to
measure the initial momentum distribution by repeating
the measurement cycle with the modulated standing wave
off. Our initial momentum spread is Gaussian distributed
with cr = 4.6hkL, and the resolution of this measurement
can be subrecoil. We have measured the momentum
distributions for A with values 0 ~ 7 in order to cover the
full range of mixed phase space dynamics. The measured
rms momenta vs A are shown in Fig. 1 (diamonds). The
empty diamonds are for an interaction time of 10 p, s and
the solid diamonds are for 20 p, s, showing that these results
are close to saturation for the range of A that is shown.
Note that for small values of A there is good agreement
with the classical prediction. At A = 0 the system is
integrable and momentum is trivially localized. As A is
increased the phase space becomes chaotic, but growth is
limited by the RK boundary. Our measured momentum
distributions (in Fig. 2, bottom panel) are characteristically
boxlike in this regime (A = 1.5). As A is increased beyond
a critical value there are oscillations in localization with
an rms spread that deviates substantially from the classical
prediction at the peaks. For those values of A the classical
phase space is predominately chaotic, and exponentially
localized distributions are observed because the quantum
break time occurs before the RK boundary is reached. This
is shown in Fig. 2 for A = 3.0. At the dips in oscillation,
as in the case A = 3.8, the classical phase space becomes
nearly integrable and the measured momentum is close
to the classical prediction. In the intermediate regime
the phase space is mixed and the momentum distributions
exhibit features which can be clearly identified with the
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FIG. 2. Phase portraits (upper panel), classical momentum distributions (middle panel), and experimentally measured momentum
distributions with Floquet theory (bottom panel, theory marked by lines) for runs with parameters similar to those in Fig. 1. Note
that the vertical scales for the distributions are logarithmic and are marked in decades.

underlying classical phase space. In Fig. 3(a), there is
a boxlike distribution with a Gaussian-like peak in the
center. This corresponds to part of the initial conditions
that is trapped in an island of stability and part that
diffuses out to uniformly fill the chaotic phase space
within the RK boundary. In Fig. 3(b) A is larger and the
RK boundary is farther away. Now the part of the initial
conditions contained in the chaotic domain becomes
exponentially localized, while the island structure leads
to a similar effect as in Fig. 3(a). Both figures illustrate
the unique potential of this experiment to study issues of
structure and transport in a mixed phase space.

To compare with experiment we have performed a
space-time integration of the Schrodinger equation using
a standard two-sweep method [6]. A single particle
wave packet initial condition mimics the ensemble of
independent atoms in the experiment for which the width
in p is Gaussian while the spatial width in @ is limited
by the spread of the MOT. In our system of scaled units
these widths are related by the commutator [P, p] = ik,
where k = 8~„/cu . Our choice was a "squeezed" wave
packet given by tiI(p) = (2~p, ) 'i exp[i(A(@ —@o) +
po(4 —40)/0)], where (@0,po) are the centroid (mean)
values and the variances [with respect to (@o,po)] are
(~4') = tu, (~@&p + &pa, y) = k, and 4p(hp'& =
k (I + a ), from which we get that g = (I + o)/4p,
The widths in p and ItI are independently determined
by adjusting n to maintain the minimum uncertainty
condition. This initial condition is evolved under the

Schrodinger equation for fixed interaction time and p„,
is computed. The results are shown by the heavy dashed
line in Fig. 1 and are in close absolute agreement with
experiment with no adjustable parameters.

To gain further insight into this problem, we have also
done a quantum Floquet analysis. The eigenstates of our
Hamiltonian are most naturally represented using a 2D
Floquet state basis, (P(P, r) = e'~~e '"u(P, r)). Here
u(@, r) reflects the periodic structure of the Hamiltonian;
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FIG. 3. Experimental momentum distributions for two cases
in a mixed phase space regime. In (a) A is below the crossover,
and growth is limited at the RK boundary. In (b) A is above
the crossover and initial conditions in the chaotic regime are
exponentially localized. In both cases initial conditions in
islands of stability remain trapped. Note that the vertical scale
here is linear.
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FIG. 4. Theoretically calculated positions and rms widths of
the Floquet states in the (e + m, q + n) space for A = 5.0,
k = 0.37, and k = 0.16.
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that is u(@ + 2', r) = u(P, r + 2~) = u(@, r), where

q is the quasimomentum and e is the quasienergy
[7]. Expanding u(@, r) in a Fourier series, in
both the space and time variables, allows us to
write the quasienergy-momentum states in the form
11t,(p, r) = g „p'„e' q+" ~e ' '+ '. The Schrodinger
equation in this representation is then

eP'„= [—m + (n + q)'/2]P'„

g 1 (~)(0,. ,. + 0,. ) (1)
f= —co

For each q, the set of quasienergies and the corresponding
quasienergy-momentum states are obtained by numerically
solving Eq. (1). To make contact with the experiment,
we use appropriate initial conditions and find the Floquet
basis representation. The quantities (q + n) and (e + m)
are identified, respectively, with momentum and energy.
The solution is then averaged in time to give the long-time
results. To simplify the Floquet analysis, the small spread
in k proportional to laser intensity variations across the
ensemble of atoms is approximated by the use of an rms
k. The rms momentum spread from the Floquet analysis
is shown in Fig. 1 (heavy solid line) and the line shapes
are given in Fig. 2 (bottom panel). For both cases there is
good agreement with experiment over the range of A.

The Schrodinger equation has the form of a two-
dimensional tight-binding "eigenenergy" (e) equation
with "site energy" —m + k(q + n) /2 and hopping
terms of energy k/2k. For a given state, the site energy
cannot differ from the eigenenergy by much more than
the "hopping energy. " Since we can choose both e
and q to be within the interval [-1/2, 1/2], each wave
function is confined to a parabolic strip centered about
the curve e + m = k(q + n) /2 as shown in Fig. 4. The
points along the parabola denote the expectation values
of e + I and q + n for each Floquet state. The error
bars denote the corresponding rms widths. With the
locus of states confined to a region about the parabola
the problem is essentially reduced to one dimension.
Furthermore, along this quasi-1D array of points there is
no apparent order, which is reminiscent of the disordered

lattice underpinning the theory of Anderson localization
[8]. Beyond this connection to condensed matter physics,
our system is directly analogous to the current-driven
Josephson junction [9], and heating of a Bloch electron in
an ac field [10], and can serve as a testing ground without
the complications of impurities, multiparticle interactions,
and thermal effects. The latter can be introduced in a
controlled manner which will be the topic of future work.

Looking towards future studies of quantum dynamics
in a mixed classical phase space it is clear that initial
conditions that are also confined in P could open new
areas of research. For example, if the atoms are initially
prepared within an island of stability, it may be possible
to directly observe dynamical quantum tunneling. Control
of initial conditions may also enable a direct study of
quantum scars [11,12].
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