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It is common for a periodically driven nonlinear system to have coexistent attractors. Specifically,
we are interested in the case where one of these attractors is a limit cycle whose period is an integer
multiple of that of the driving. Suppose that in a given application the system is desired to evolve with
this limit cycle with a particular phase relative to the driving. In this Letter we propose a technique
combining the effect of noise and the effect of a bias periodic signal with a properly chosen phase to
accomplish this task.

PACS numbers: 05.45.+b

Introduction. —Periodically driven nonlinear oscillators
constitute a class of models that underlies many important
applications. It frequently occurs that, in the parameter
region of interest, such a system exhibits several coexis-
tent attractors (multistable). Let T denote the period of
the forcing. Suppose, for the object of this Letter, that
one of these attractors is periodic with mT (m ) 1) its pe-
riod. In a given situation this orbit may be wanted for
its wave form and spectral properties. If the system is
strobed at times t„= nT (n = 0, 1, 2, 3, . . .) while moving
on this attractor, we obtain m discrete surface of section
points, repeating every m cycles of the forcing. Thus, start-
ing at t = 0, from each of these m points we can have
a distinct resulting trajectory, differentiated from one an-
other by their relative behavior with respect to the driv-

ing, which we henceforth loosely refer to as the phase;
each of these m trajectories has its own domain of initial
conditions [1]. Clearly, the existence of multiple basins
and domains can be detrimental in such applications as
laser arrays or Josephson junctions, where a collection
of nearly identical systems with weak coupling is often
desired to evolve in synchrony. On the other hand, the
richness provided by these phenomena, through proper
means of utilization, can also lead to improved system
performance.

The above problem was first noted by Pecora and
Carroll, who in Ref. [2] proposed a method to drive
a multistable system to a preselected trajectory, re-
gardless of where the system is initialized. Their
method involves adding a chaotic signal with cer-
tain periodic characteristics as part of the drive, and
they showed that it works effectively when applied
to electronic circuits. Our objective is to present a
simpler and more flexible approach, combining the
use of noise and a bias signal, to achieve the same

result. Specifically, we show that while the random
noise, through a mechanism similar to stochastic reso-
nance, is important in eliminating unwanted basins, it
is the small periodic bias signal that is crucial in attain-
ing the desired domain. Furthermore, as an additional
parameter, the phase of the bias can be tuned in such a
way that any one of the m available relative trajectories
is selected at will. For a spatially distributed ensemble
of multistable systems, this aspect of the technique is
especially useful in realizing not only coherent solutions
of different phases but also patterns of requisite spatial
modulations. We point out that in our approach the
combination of noise and signal is activated only for a
brief period of time, just long enough to drive an arbitrary
initial condition to the target trajectory. After that, it is
withdrawn and the system is left to evolve in its natural
state. This is in contrast to the method of Ref. [2] where
the chaotic drive remains on for as long as the system is
operating (i.e., the system is permanently altered). We
illustrate our ideas below using two examples, one a
differential equation system and the other a circle map.

Fxamp/e 7.—Consider the driven Duffing equation

X + 0.05x + x = a + b cost + [f,. (t) + f„(t)], (1)
where f, (t) is the bias signal and f„(t) represents the ef-
fect of random forcing. Specifically, we assume that f„(t)
takes the form f„(t) = A„rt(t), where g(t) is Gaussian
white noise with (g(t)) = 0 and (g(t) ri(s)) = 6(t —s).
The signal f, (t) is chosen to be in the form f, (t) =
A, sin(cot + @), where co and @ are to be determined by
the actual application.

For f, (t) = f„(t) = 0, a = 0.15, and b = 0.21, Eq. (1)
exhibits three periodic attractors, of period 1, 2, and 3,
respectively. Consider a rectangle in the phase space
(x, x) defined by —0.6 ( x ( 0.6 and —0.2 ( x ( 0.2.
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FIG. 1. Plot of p, ~

= L2/[L2(0) + L3(0)] versus A„ for Eq. (1)
with A, = 0. Here p, [ is the ratio of the number of points
found in the basin of the period-2 attractor after the removal
of perturbation to the total number of initial conditions in the
rectangle —0.6 & x & 0.6 and —0.2 & ~ & 0.2.

We find that, starting at t = 0, about 20% of the points
in this region are attracted to the period-3 attractor, while
the remaining 80% converge to the period-2 attractor, with
equal proportions in the two distinct trajectories denoted
n and P. The overlap between the rectangle and the
basin of attraction of the period-1 attractor is very small,
accounting for less than 1% of the region, and we ignore
it for the time being.

Now our task is to obtain a period-2 trajectory with a
preselected phase (e.g. , the phase a) irrespective of where
the system is initialized. We use numerical experiments
to illustrate our strategy for achieving this goal. To begin,
consider a uniform grid of 70 && 70 initial conditions
on the aforementioned rectangle. For each of the 4900
points, we evolve [3] Eq. (1) for 100T = 2007r units of
time, T = 2~ being the period of the driving, and then
reduce the value of f, (t) and f„(t) linearly to zero for
another 50T. In the numerical work, this "quenching"
process is implemented by setting A, and A„ to eA, and
eA„, and reducing e from one to zero in a ramp. After
the removal of f, (t) and f„(t), we examine the status of
the resulting point (x, x). The following terms are used
for classifying the finding. The values of L2(0) and Ls(0)
denote the numbers of points in the basins of the period-
2 and period-3 attractors at t = 0. The symbols L2 and
1.3 denote the same quantities at t = 150T. We define
N and Np to be the numbers of points in domain n and
domain P of the period-2 attractor at t = 150T; clearly
N +Np =I2.

First, we study the role of noise. Let f, (t) = 0. In
Fig. 1, the horizontal axis is the strength of noise A, and
the vertical axis plots p, t

= L2/[L2(0) + L3(0)]. As can
be seen, the effect of noise increases with A„reaching
an optimal level when A, = 0.005, where almost 100%
of the initial conditions are driven to the basin of the
period-2 attractor. Upon further increase of A„, however,
the effectiveness of the random perturbation degrades
monotonically. The tail portion of the curve indicates
that, when the noise level becomes too large, more and

more points are actually driven to the period-1 attractor.
We note that the length of time for which the noise is
activated can have important inhuence on the details of
the curve in Fig. 1. Specifically, if noise is allowed to
operate on a time scale much longer than that used in

Fig. 1, a range of noise strength can be used to achieve
the maximal result (see example 2 below).

The above observation can be understood in simple
terms by considering the one dimensional problem of
viscous particles moving in a bounded potential with two
minima denoted A and B. Say A is the target attractor
which is more stable (i.e., A is a deeper minimum) than B
We draw an analogy between A and the period-2 attractor,
and between B and the period-3 attractor. Within a
given time scale, if the added random perturbation is
weak, most particles initialized in B will remain in B,
corresponding to the relatively small value of p, j seen
in Fig. 1 for small A„. As the noise becomes stronger,
more and more particles will be driven to A, leading
to the monotonic rise in the function of p, ~ versus A, .
This process continues until the optimal noise level is
attained, beyond which the perturbed particles can jump
more and more easily from A to B, giving rise to the
monotonic decline portion of the p, i versus A„curve in

Fig. 1. If a third, even deeper minimum is present in the
system, then large noise will ultimately drive the system
toward this new state, corresponding to the tail portion
of Fig. 1. Generally, the role of noise is twofold. It
generates incoherent random jumps in all directions. But
with proper strength, it also induces coherent motion from
the less stable attractor (with "shallow" basin) to the more
stable one (with "deep*' basin). The competition between
these two seemingly opposite effects yields the type of
curve in Fig. 1. This mechanism is similar to that of
stochastic resonance [4,5] where noise can be used to
facilitate information processing [6].

Unlike basins of attraction, the definition of domains of
initial conditions for periodically forced systems depends
on the time when the observation is made. In the case
of the period-2 attractor of the Duffing equation, a point
in domain n at t = 0 maps to domain P at t = T, and
vice versa. That is, the two domains are symmetric with
respect to the time translation t ~ t + T. This suggests
that random, nondiscriminating perturbations will not be
very useful by themselves in driving the system from one
domain to another. Our numerical experiments confirm
this idea. But imagine that if a judiciously chosen
signal, such as an impulse train with period 2T and
appropriate amplitude, is applied to the system, then the
above symmetry is broken and it is conceivable that the
trajectory may be led to the preferred domain after certain
transient time. In fact, we find on our first choice that
the most accessible signal, the sinusoid, works adequately
for this purpose, provided its period is twice that of
the driving. Specifically, we let f, (t) = A, sin(t/2 + P),
where @ is a tunable phase parameter. Figure 2(a) plots
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FIG. 3. Plot of p, 3
= N /[L&(0) + L3(0)] versus @ for Eq. (1)

with A, = 0.002 and A„= 0.004. Here p, 3 is the ratio of the
number of points found in domain u of the period-2 attractor
after the removal of perturbation and the total number of
initial conditions in the rectangle —0.6 ~ x ( 0.6 and —0.2 ~
x ( 0.2.
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FIG. 2. (a) Plot of p, z = N /[N + N~] versus A, (solid
line) and pI = L&/[Lz(0) + L3(0)] versus A, (dashed line) for
Eq. (1) with A„= 0 and P = 7r/2 (b) Plot of p.,z versus A„
with A, = 0.0004 and ItI = 7r/2. The quantity p, & gives the
ratio of the number of points in domain n to the number of
points in the basin of the period-2 attractor after the removal of
perturbation.

p. q
= N /[N + N~] against A, (solid line) with f, (t) set

to zero and P = ~/2. Evidently, a very small signal
of A, = 0.0008 is already sufficient to produce a 100%
conversion from domain P to domain n. Under the same
condition, the fraction p, t

= Lq/[Lq(0) + L3(0)] (dashed
line) shows no significant change for the given range of
A, . This means that the added bias signal has almost
no effect on the basins of the period-2 and period-3
attractors. Figure 2(b) shows the result of combining the
signal and noise on the elimination of unwanted domains.
We fix A, = 0.0004 and @ = ~/2. The vertical axis is
p, q

= N /[N + Np]. Again, we observe a stochastic
resonance type of response as A, increases. Here the
noise helps to achieve a higher percentage of conversion
compared to the case with signal alone.

We now turn to the role played by the phase
The result is shown in Fig. 3, where we choose A, =
0.002 and A, = 0.004, and plot p, 3

= N /[Lq(0) + L3(0)]
against @. The main effect is that there are two disjoint
intervals of ItI values for which opposite effects are
obtained in terms of selecting a specific domain. In
particular, for ~/4 ( @ ( 4'/5, about 95% of the initial
conditions in the rectangle are driven to domain n. In
contrast, domain n captures almost no points if 117r/8 (
tt ( 17'/10. In other words, nearly all the trajectories,
except a few that still linger on the period-3 attractor,

are moved to domain P. This flexibility is an important
feature rendered by the phase of the bias signal.

Figure 4 illustrates the combined effect of noise
and the bias signal. We let @ = 57r/6 and plot
p 3 N /[Lp(0) + L3 (0)j versus A„ for different values
of A, . The four successively higher curves correspond to
A, = 0.0004, 0.001, 0.002, and 0.004. The optimal case
occurs when A, = 0.004 and A„= 0.0044 where 99% of
the points started in the rectangle —0.6 ~ x ( 0.6 and
—0.2 ( x ( 0.2 are driven eventually to the period-2
trajectory of the phase n.

Example 2. It is often the case that the qualitative
dynamics of a periodically driven nonlinear oscillator like
Eq. (1) can be adequately modeled by circle maps of the
form

x,„+( = F(x,„) modl,

where x is an angular variable and F(x + 1) = F(x) + l.
For the purpose of this paper we choose F(x) to be
F(x) = x + A —Bg(x) with g(x) = 4x for 0 ~ x ( 0.25,
g(x) = 2 —4x for 0.25 ~ x ( 0.75, and g(x) = 4x —4
for 0.75 ~ x ( 1. The map with the addition of noise
and a bias signal is

x ~~ =x +A —Bg(x )+A, g +A 5 modl.
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FIG. 4. Plot of p, 3
= N /[L&(0) + L3(0)] versus A„ for

Eq. (1) with P = Sm/6 where successively higher curves
correspond to A, = 0.0004, 0.001, 0.002, and 0.004.
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As shown in Ref. [7], this map has a period-2 and a
period-3 attractor coexisting for A = 0.41, B = 0.29, and
A„= A, = 0. Our objective here is to drive an arbitrary
initial condition to a particular phase of the period-2
orbit. To this end we assume q to be a random number
uniformly distributed in [—0.5, 0.5] and 5 = 0 if m =
odd and 5 = —1 if m = even.

From Fig. 2(a) we observe that, if points are initialized
in the basin of the period-2 orbit, then with signal alone
we can achieve an 100% conversion to the desired phase.
This, in combination with Fig. 1, suggests that the noise
and the signal can also be applied in two consecutive
stages: First, all the points are driven to the basin of
the period-2 attractor with noise, and then these points
are further moved to the appropriate domain with the
signal. We demonstrate this approach with Eq. (3). In
the numerical work we begin with 5000 initial conditions
distributed uniformly in the unit interval. Then we evolve
these points under Eq. (3) for 500 iterates. The next
50 iterates are used to remove the perturbatian linearly.
In Fig. 5 we show the result of p, t = L2[L2(0) + Ls(0)]
versus A„when A, = 0. Note that, since in this case the
time scale during which the noise is active is relatively
long, a range of noise strength can be applied to achieve
the maximal effect. Finally choosing A„= 0.015 and

A, = 0.005 and activating the drive in two stages, we
convert all the 5000 initial conditions to the desired phase
of the period-2 orbit.

In summary, a technique is proposed which eliminates
multiple basins as well as domains of attraction in

0.9-

0.6 I I I I

0 0.02 0.04 0.06 0.08 0.1

FIG. 5. Plot of p, ~
= Lq[L2(0) + L&(0)] versus A„ for Eq. (3)

with A, = 0.

periodically driven systems. The goal is to make the
system behave with a periodic trajectory that has a
preselected phase relative to the driving. There are
three essential components in the technique: noise, a
bias periodic signal, and the phase of the signal; the
role of each is illustrated with numerical simulations
performed on two examples. Our result demonstrates that
the technique is flexible and could be easily implemented
in experiments. We suggest that an important area of
future application is spatiotemporal systems where nearly
identical units with weak coupling are desired to evolve
in synchrony [8].
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